

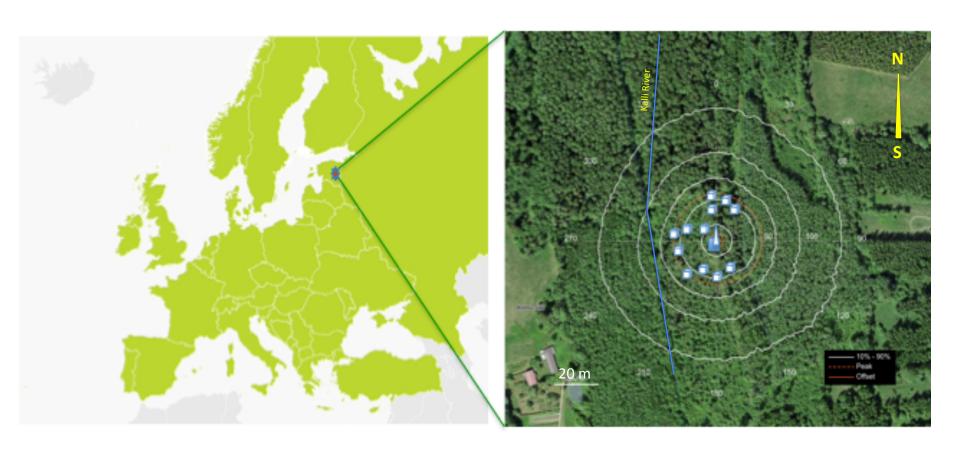
Long-term dynamics of N₂O fluxes from soil, stem and canopy in a hemiboreal forest: Impact of wet and dry periods

<u>Ülo Mander¹</u>, Thomas Schindler¹, Kateřina Macháčová², Alisa Krasnova^{1,3}, Jordi Escuer-Gatius³, Martin Maddison¹, Jaan Pärn¹, Gert Veber¹, Dmitrii Krasnov³, and Kaido Soosaar¹

- ¹ Dept. Geography, Inst. Ecology and Earth Sciences, University of Tartu, Estonia
- ² Global Change Research Institute CAS, Brno, Czech Republic
- ³ Estonian University of Life Sciences, Inst. Agricult. & Environ. Sciences, Tartu, Estonia

Background

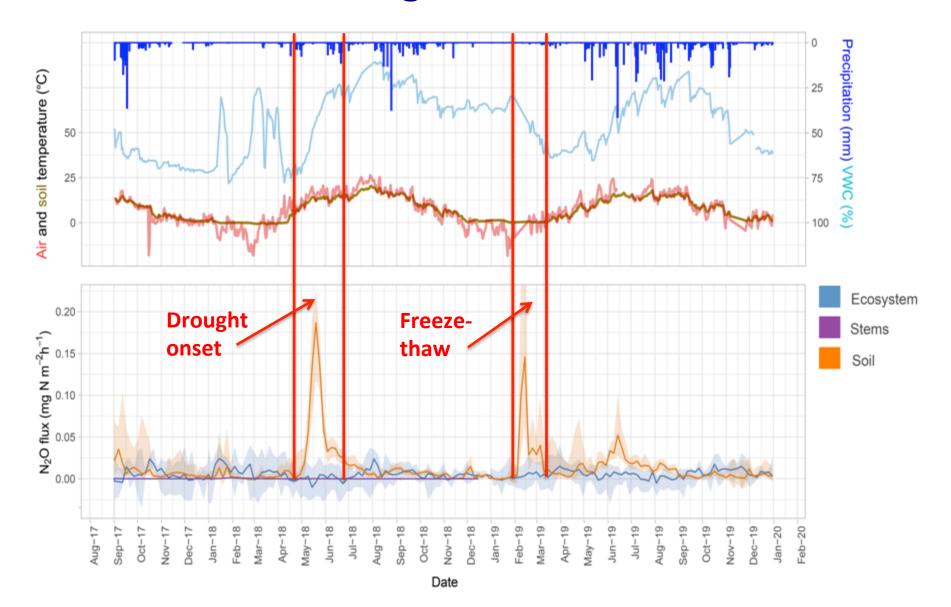
- Riparian zones known as hotspots of N₂O emission (Groffman et al., 1998; Van den Heuvel et al., 2009)
- Grey alder (Alnus incana (L.) Moench.) is a fast-growing tree species with a great potential for short-rotation forestry in the Northern and Eastern European countries, typically found in riparian zones (Uri et al., 2014).
- The symbiotic dinitrogen (N_2) fixation ability makes alders important for the regulation of nitrogen (N) cycle in forested areas (Huss-Dannell *et al.*, 1991).
- There are few studies on N_2O emission from grey alder stands (Soosaar et al., 2011; Mander et al., 2014), however, no research on ecosystem-level N_2O budgets (soil and tree stem fluxes with eddy covariance (EC) measurements above the canopy) could be found.

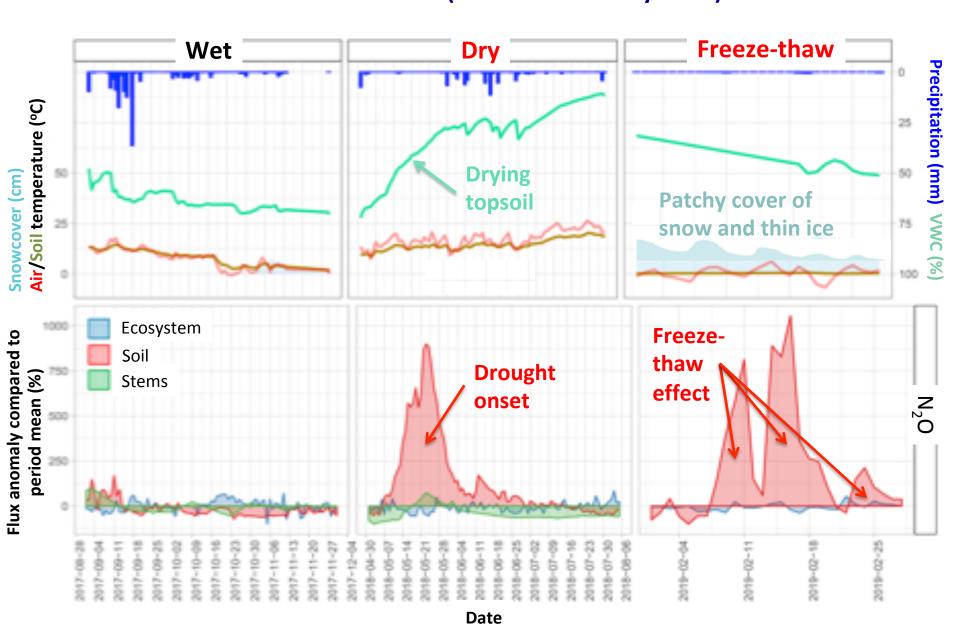


Objective: estimating main relationships between N₂O fluxes and key environmental factors in long-term perspective using continuous high-frequency measurements

Research setup

- **Study site**: 40-yrs old riparian grey alder forest stand on former agricultural land (Gleysol, Luvisol) in Agali, Eastern Estonia
- Measurements
 - Eddy covariance fluxes (Gill 3D anemometer on 18m eddy tower, Aerodyne quantum-cascade laser absorption spectrometer (QCLAS), ca 5Hz working frequency)
 - Soil fluxes with 12 automated soil chambers (8 opaque, 4 transparent; 0.16 m², 0,032 m³) connected with multiplexer and a pump to Picarro 5280 laser spectrometer, (ca 12 measurements per chamber per day)
 - Tree stem fluxes (12 trees, at heights 0.1, 0.8, and 1.7 m from ground, two chambers per stem interconnected with tubes into one system (volume 0.00119 m³, covering 0.0108 m² of stem surface, gas concentration homogenized by pump, gas sampled of 0/60/120/180 min sequence in12 mL glass vials, concentration and flux measured in lab with Shimadzu GC-2400, 62 manual sampling sessions from August 2017 until July 2018)
 - Potential soil N₂ flux measurements in lab using He-O₂ method (Butterbach-Bahl et al., 1998), September 2017, August 2019)
 - Ancillary measurements of key environmental factors (meteo-parameters, groundwater level, soil volumetric water content VWC, soil temperature – continuously with automatic sensors, soil and groundwater physical- chemical parameters 10 sessions)


Location of the Agali riparian grey alder forest in Eastern Estonia and eddy tower footprint area with automated soil chambers



Dynamics of N₂O fluxes in the Agali riparian grey alder forest from August 2017 to December 2019

Hot moments in N₂O emission: "Dry" (1st May – 5th August 2019) and "Freeze-Thaw" (1st – 28th February 2019)

Most important outcomes

- Mean ± s.e. fluxes of N₂O during the period August 2017 to September 2019 were (kg N₂O-N ha⁻¹ yr⁻¹):
 - Ecosystem (eddy covariance) 0.43 ± 0.01
 - Soil 1.33 \pm 0.03
 - Tree stems 0.0075 ± 0.001
- The range of N_2O fluxes from the ecosystem, soil and tree stems varied from -0.89 to 1.61, from -0.08 to 3.20 and from -0.0073 to 0.033 kg N_2O -N ha⁻¹ yr⁻¹, respectively.
- The ecosystem level N₂O flux was relatively equal during the whole study period showing a slight diurnal pattern
- The maximum soil flux was found at the soil VWC of 50, peaking in two hot moments – drought onset and freezing-thawing periods, surprisingly, no increase in eddy flux was observed this time
- Stem fluxes of N₂O were low showing some increase in wet periods.
- The average annual potential N_2 flux in soil was 140 kg N_2 -N ha⁻¹ which made the average N_2 -N: N_2 O-N ratio in the soil about 60.

