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Bouguer Anomaly

Introduction

➢ But: How large is the gravity contribution to the Alpine gravity field caused by a subducting slab?

➢ Bouguer anomaly is dominated by crustal thickness.

Crustal thickness

Spada, M., Bianchi, I., Kissling, E., 
Agostinetti, N. P., & Wiemer, S. 
(2013). Combining controlled-
source seismology and receiver
function information to derive 3-D 
Moho topography for Italy. 
Geophysical Journal International, 
194(2), 1050-1068.
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Slab models

Faults in red after Schmid et al. (2004)
Topography from ETOPO 1 Amante,
C., & Eakins, B. W. (2009)

We use seismic crustal depth estimations and different upper mantle tomographies to define hypotheses for the geometry of
the subducting slab segments.

➢ A) Hypothesis 1 includes a west Alpine slab up to 100 km (Kästle et al. (2018)), a short central Alpine slab and an eastern
Slab segment subducting north east (Lippitsch et al. (2003)) with a slab gap separating central and eastern Alps.

➢ B) Hypothesis 2 based on a new surface wave tomography (El-Sharkawy, (2019)), including a long Eurasian slab in the
central Alps and bivergent subduction in the eastern Alps. In addition, we consider the south-dipping slab segment beneath
the northern Apennines.

A) B) 
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Model setup
➢ LitMod 3D by Fullea et al. (2009) is used for slab modelling.

➢ Calculates gravity based on density distribution depending on temperature, pressure and composition on a finite
element grid.

➢ Slabs are divided into a lithosphere and a sub lithosphere domain.
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Model composition

Table 1 : Compositional difference between lithosphere mantle and subducting 
slab material. 

a Classifications according to Griffin et al. (1999b), b McDonough & Sun (1995), c Workman & Hart (2005)

Major Oxide 
Compositions

Aver. Tecton
Gnt. SCLM a

Aver. Tecton 
Gnt. Peridotite a

Differences

SiO2 44.5 45 -0.5

Al2O3 3.5 3.9 0.4

FeO 8 8.1 -0.1

MgO 39.8 38.7 1.1

CaO 3.1 3.2 -0.1

Na2O 0.26 0.24 0.04

Major Oxide 
Compositions

PUM b DMM c Differences

SiO2 45 44.7 0.3

Al2O3 4.5 3.98 0.52

FeO 8.1 8.1 0

MgO 37.8 37.8 0

CaO 3.6 3.17 0.23

Na2O 0.36 0.13 0.25

Table 2 : Compositional difference between sub lithosphere mantle and 
subducting slab material. 

➢ We use phanerozoic compositions for the lithosphere and the subducting slab segments.

➢ depleted mid‐oceanic ridge basalt mantle (DMM) and primitive upper mantle (PUM) are used for the sub lithospheric
domain.

➢ Note those compositions are a first order test and serve as a starting point. They do not necessarily represent the
compositional mantle environment in the Alps.

➢ Additional to the density contrast within the sub lithosphere, a temperature anomaly of – 100 ° K is added.
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Results

Density contrast within the subducting slab to the ambient mantle 
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LAB
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Lithosphere only Sub lithosphere only Full model

Calculated gravity effect gz at surface height

Hypothesis 1

Hypothesis 2
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Summary, Conclusion and Outlook
Summary
• We can model the gravity signal of subducting lithosphere taking composition, temperature and pressure distributions into consideration

using the LitMod 3D algorithm. Furthermore, we can estimate those quantities separately for the lithosphere and sub lithosphere.
• The density contrast between the slab segments and the ambient mantle is for the lithosphere in the order of 5 kg/m³ and for the sub

lithosphere in the order of 10 kg/m³.
• The gravity signal for the gz component at surface height is in the order of 12 to 17 mGal.

Conclusion
• Different slab hypotheses configurations can be distinguished by gravity modelling at surface station height.
• The gravity signal of a subducting slab in the Alpine region is in the order of 20 mGal compared to the overlaying negative Bouguer

Anomaly of about - 200 mGal.
• The gravity signal of the slabs can be compensated by slight changes to the Moho depth and or LAB depth within the estimated

uncertainty ranges.

Outlook
• The next step could be: more complex LitMod models with increased resolution in the crustal domain, to cross validate with

geodynamics.
• Calculated seismic velocities can validate slab models by comparing to seismic velocities measured by the AlpArray.

Acknowledgement: This study is part of the project "Surface Wavefield Tomography of the
Alpine Region to Constrain Slab Geometries, Lithospheric Deformation and Asthenospheric
Flow in the Alpine Region" funded by DFG in the SPP Mountain Building Processes in 4D.
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