using machine learning
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Two examples of PP at an industrial scale
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Method of PP employed : QRF, another way to find analogues
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Method of PP employed : QRF, another way to find analogues

» No assumptions on the target variable
» Self-selction of the most useful predictors, interpretable

» hyperparameters tuning quite easy and stable over locations vs. other
ML techniques

Cons

» Potentially big models (need massive HPC optimization, and storage
capacities)

» QRF cannot go "beyond the range of the data"

» available archives: 2 years

\

Taillardat, Maxime, Olivier Mestre, Michaél Zamo, and Philippe Naveau.
"Calibrated ensemble forecasts using quantile regression forests and
ensemble model output statistics." Monthly Weather Review 144, no. 6
(2016): 2375-2393.
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In a forecast automation context

Goal: Be skillful for extremes events subject to a good overall performance

Temperature

Work on forecast anomalies (w.r.t the ensemble mean for example)

Hourly rainfall

Use QRF outputs to fit a distribution which would:
»  Model jointly low, moderate and heavy rainfall
> Be flexible

» Use of an Extended GP distribution (EGP3) (Papastathopoulos and Tawn, 2013 ; Naveau et al., 2016 ;
Tencaliec et al. 2019)

Model (i): Case G(v) =v*

x=1(aP)
2

Densit f(x)
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A semi-parametric approach for hourly rainfall

Our final distribution is:

_1=
G(x):fo+(1—fo)|:1 - <1+§> 5}

1. Run QRF to get I:'(y|X =x)=B(Y < y|X=x)
2. Keep the probability of no rain?o = B(Y = 0|X = x) from QRF outputs

3. Estimate (%, o, E) from non-zero QRF quantiles

Taillardat, Maxime, Anne-Laure Fougeéres, Philippe Naveau, and Olivier Mestre. "Forest-based and semi-parametric

methods for the postprocessing of rainfall ensemble forecasting" Weather and Forecasting (2019).
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Post-processing of Temperature post-processing

Observations available on 2000 stations locations across Western
Europe

Raw model resolution: 10km

v

v

v

Station-wise post-processing with ECC
Target resolution: 1Tkm (Downscaling step), 4000000 points

v

Procedure time has to be inferior to 15min for operational constraints.
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Towards high resolution temperature fields

Similar to regression-kriging

Regression phase member by member

» between PP values and (downscaled) raw NWP values

» On homogeneous climate zones

» With geomorphological predictors (altitude, distance to coast, PCA on
topography...)

Regression equation applied to the whole grid: spatial trend estimation

Spatialization of residuals
» using multi-resolution B-splines (MBA ; Lee et al., 1997)
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Towards high resolution temperature fields: lllustration

Step-by-step procedure illustrated over the southeast of France: raw member temperatures on 10km grid (upper left
panel), raw projected temperatures on a 1km grid (upper right panel), spatial trend estimation using regression

~_model on subdomains (lower left panel), field of residuals interpolated using a MBA procedure (lower right panel).
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Towards high resolution temperature fields: lllustration

Resulting member.
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Towards high resolution temperature fields: lllustration

Raw member 6 temperature field (upper left panel), the same after calibration, ECC and interpolation phase (upper
right panel) together with raw (lower left panel) and post-processed temperature field (lower right panel) for member
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Results of post-processing of temperature in the 2056 stations with averages CRPS (top), and mean and variance of
PIT statistic, related to rank histograms. The validation is made by a 2-fold cross-validation on the two years of data

Performance on stations
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Operational framework for hourly rainfall

v

French grid : 300000 gridpoints

PEAROME (16 members, 2.5 km), lead times from 1 to 45 hours
Observations: Radar+rain gauges ANTILOPEJP1H (1 km)

» Semi-parametric QRF

v

v

» Restore scenarios (post-processed members).

» Max, 950, q10, q90, sd, mean, Proba rain, Proba >5mm/h RR1
» Max, Proba rain RR1 lead time before

» 10, q90 de reflectivity max.

» Mean CAPE_INS

» Mean ICA

» 10, 990 of HU 500m, 700hPa, TCC

» mean FX 10m

» mean U,V, FF 700hPa

Maxime Taillardat 97



Architecture

» Data pooling: We consider high res. errors homogeneous on 10km
boxes (spatial penalty). PP is made on these HCA: number of statistical
models reduced by a factor 25. (14000 HCA)

» Data boosting: As observation is at 1km, observation is a distribution.
Instead of taking one upscaled observation, the empirical quantiles of
order 0, 0.25, 0.5, 0.75, 1 of ANTILOPE distribution in the HCA are
taken. The length of the training sample is inflated by a factor 5.

. ._._._. Raw PEAROME 16 mem 2.5 km
o . «0.0-0

Raw PEAROME* 400 mem 10 km
(vs. 81 ANTILOPE obs)

Y

Post-P of PEAROME* on H.C.A 10km

400 PEAROME* quantiles 10 km

member's
ANTILOPE grid 1.25km reconstryiction

@  PEAROME grid 2.5km (ECC,d£CC,SS...)

. PEARP grid 10km

‘ HOMOGENEITY CALIBRATION AREA 10km  Calib PEAROME 16 mem 2.5 km  Blending with other models
for quantiles and probabilites
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What sort of members do we want ?

Schaake Shuffle (SS) and MD-SS(see e.g. Clarke, 2005 ; Scheuerer, 2018)

» We need an observations archive, we lose the model "signature”

Ensemble Copula Coupling-like methods (ECC) (see e.g. Schefzik et al., 2013 ; Ben Bouallégue et al., 2017)

» Using (potentially wrong) physical structures of the raw ensemble

Maxime Taillardat 117



ECC and rainfall: it is not so simple...

Bootstrapped-Constrained Ensemble Copula Coupling (bc-ECC)
We do ECC many times (here 250 times by HCA) and average values :
» |f raw zeros > calib. zeros : smallest non-zero calib. rainfall are assigned
and averaged on raw zeros
» araw zero becomes a non-zero member IF there is a raw non-zero
member in a 2 grid point neighborhood

Calibration : 1 distribution on 1 HCA 2=5°%; 16 members / grid point

Maxime Taillardat 12/17



Rain discrimination results

time averaged

time-averaged maximum of Peirce’s Skill Score
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ECC + post-processing visualization
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2 PP members (left) with their associated raw members (right)

Maxime Taillardat 14/17



Visual inspection on a heavy Mediterranean event

The best member of the raw ensemble for this event vs. the PP one vs. the
radar obs.

RAW PEARO member 14 amount 24h day : 2019-10-23
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Visual inspection on a heavy Mediterranean event

The best member of the raw ensemble for this event vs. the PP one vs. the
radar obs.

PEARO member 14 QRF TAIL amount 24h day : 2019-10-23
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Visual inspection on a heavy Mediterranean event

The best member of the raw ensemble for this event vs. the PP one vs. the
radar obs.

RADAR Observation for day : 2019-10-23
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Are RR24 generated by PP RR1 + bc-ECC good ?

time-averaged CRPS boxplot RR24 10/19
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Conclusion

No "absolute” method

Tuning takes time

Different goals, computing capabilites, skills = different algorithms to consider
Methods should be interpretable, robust, with easy/universal set-up.

vvyvyyvyy

Forecast automation : avoiding big/unphysical mistakes. (not seen by classical scoring rules). Must do visual
inspections.

Reference

»  Taillardat, Maxime, and Olivier Mestre. "From research to applications—Examples of operational ensemble
post-processing in France using machine learning." Nonlinear Processes in Geophysics Discussions (2020):
1-27.

» QRF: good, easy to tune, but big models (here several hundreds of Gb). Deep Learning/ (C)NN is coming...
Is the triptych "performance/tuning/model size" better with U-net/CNN ?

> PP strategies highly depend on NWP archive data policy/capacities...

Maxime Taillardat 1717
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