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Archaeomagnetism is successfully applied in many geophysical and archaeological researches.
The effectiveness of this method is highly influenced by the magnetic properties of the materials
studied — various burnt clay objects.

The magnetic mineralogy complexity of burnt clay is predetermined by a complex interaction of various factors
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* “Soaking time” is used as “the time of exposure to temperatures” according to Livingstone Smith (2001)



Experimental archaeology has enormous potential for:

- proving various archaeological statements and assumptions
- clarifying important details of ancient firing technologies

- improving the accuracy of the modern interdisciplinary research methods .
Double-chamber kiln
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Three combustion structures were constructed and several experimental R —
firings were performed in each of them in order to accumulate more data Sik A T RC ae
about the processes of firing and cooling. Cubic samples prepared from ’ N
different clay types were subjected to these firings and the resulting magnetic 4 0
properties after the first and the forth heating/cooling cycle were studied.
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All clay deposits are located in the Northern part of Bulgaria

Clays E, F, H and | are from mountainous regions where metamorphic rocks dominate but clays D and G are from the Danube plain
associated with the Quaternary loess accumulations. Therefore, different sources of rock-forming minerals can be suggested.
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Non-magnetic data

Grain-size analysis were carried out in the Central Research Laboratory of Geochemistry — University of Mining and Geology, Sofia

Grain-size distributions for the different clays in mm
Clay >2 2-0.063 0.063-0.02 0.02-0.0063 0.0063-0.002 <0.002

D 1% 0%

34% 26 % 25%
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X-Ray diffraction were performed independently in: 1) Laboratory of X-ray Diffraction Analysis, Institute of mineralogy and
crystallography, Bulgarian Academy of Science and 2) Centre for X-ray Diffraction Studies, St. Petersburg University Research Park
(https://researchpark.spbu.ru/en/xrd-eng). The same model of Powder X-ray diffractometer D2 Phaser (Bruker AXS) was used.

Clay

Detrital (rock-forming) minerals

Secondary (clay) minerals

quartz, albite, muscovite, calcite
guartz, muscovite, potassium feldspar
quartz, albite, mica, calcite, perovskite

guartz, albite, mica, potassium feldspar

Na-montmorillonite, kaolinite, clinochlore
Al-montmorillonite
Al-montmorillonite, kaolinite

Al-montmorillonite, kaolinite

quartz, albite, mica

Al-montmorillonite, kaolinite



https://researchpark.spbu.ru/en/xrd-eng

Element Clay D
MgO, % 3,19 £ 1,09
Al 0., % 22,55 + 0,59
Si0,, % 48,73 + 0,60
P,O., % 0,12 £ 0,05
S, % 0,25 + 0,02
K,0O, % 3,46 £ 0,04
Ca0, % 12,33 + 0,07
TiO,, % 0,68 + 0,02
MnO, % 0,076 £ 0,010
Fe,0;, % 5,83 £ 0,06
V, ppm 121 + 39
Cr, ppm 76 + 31
Ni, ppm <10
Cu, ppm 52+ 13
Zn, ppm 81+11
As, ppm 12+ 6
Rb, ppm 135+ 10
Sr, ppm 305 +12
Y, ppm 269
Zr, ppm 162 +9
Nb, ppm 146
Pb, ppm <10
Ba, ppm 602 + 255
Co, ppm 42 + 19
Ag, ppm 32122
Bi, ppm <15

Clay E
3,65 +1,08
27,60 + 0,65
54,30 + 0,64
0,09 £ 0,03

<0,01
3,25+ 0,04
1,45 £ 0,03
0,50 £ 0,01

0,290 £ 0,016
7,83 £ 0,06
142 + 31
101 £+ 31
40 £ 22
379
422 +£21
18+ 9
164 + 10

677

66 £ 10

145+ 8

16+ 9

229 £ 21
692 + 209
32+10
22+9

53145

Clay F
2,04 £ 0,95
20,18 + 0,55
55,58 + 0,65
0,11 £ 0,04
0,18 £ 0,02
2,39 £0,03
7,91 + 0,05
0,66 £ 0,01
0,039 £ 0,008
4,69 + 0,05
130 £33
57 £ 28
<10
53+12
75110
816
1139
199 £ 10
35+8
167 £ 8
11+6
20+ 16
602 + 243
12+ 11
24 £ 13
<15

Clay H
2,58 +1,01
25,01 £ 0,61
67,89 £ 0,74
0,08 £ 0,03
0,06 + 0,02
2,98 +£0,04
0,82 £ 0,02
0,62 £ 0,01

0,074 + 0,009
5,46 + 0,05
8819
88 + 28
<10
38+9

62+ 10

14+6

129+9

798

33+9

190+ 8

512
<10
365+171
<4
<4
41 + 28

X-Ray fluorescence analysis were done using portable device SI TITAN 800 (Bruker, Germany)

Clay |
2,83 £0,97
25,62 + 0,62
62,73 £ 0,70
0,06 £ 0,03

<0,01
2,89 £ 0,04
0,70 £ 0,02
0,66 £ 0,01

0,044 + 0,008
6,17 £ 0,06

111+ 24

79 £ 29
<10

38+9

69 £ 10
12+6

134 £ 9

74+7

35+9

187 £ 8

11+5

<10
441 + 188
<4
<4
<15

RSD

36,8

2,5

1,1

36,6

10,9

1,2

1,2

2,2

13,0

1,0

23,6

37,1

55,0

24,0

14,0

50,0

/7,1

7,2

26,5

4,9

47,7

44,6

42,5

43,2

50,6

76,6




Summary of non-magnetic results:

» The amount of supper fine particles is highest in clay E, H, | and about two times lower in D and F clays.
Therefore:
- Clays E, H and | should contain more clay minerals than D, F and G clays;

- Strongest magnetic enhancement can be expected for the brownish clays (E, H and 1) after experimental firings
(having in mind that clay minerals are the main source or iron during heating).

» Typical rock-forming and clay minerals were identified for the studied clays.

- According to their calcium content, the chosen clays can be classified as calcareous (CC) — all grayish clays (D, F, G)
possessing calcium content more than 6 % and non-calcareous (NCC) — all brownish clays (E, H and 1);

- The most significant mineralogical changes during heating and much more complex mineralogy can be suspected
for the calcium-rich D, F, G clays compared to the calcium poor (E, H and 1) clays (e.g. Duminuco et al. 1998; Cultrone et al.
2001; Trindade et al. 2010);

- Montmorillonite is detected in all clays but it appears to be in a relatively higher amount in clays E, F, H, | assuming
their greater plasticity (especially considering the higher content of superfine clay particles in E, H and | samples) than D and G
clays. This will predeterminate their different water adsorption capability and water loss behavior during heating (Rice 1987).



Rock-magnetic properties of raw clays and how they behave during laboratory heating
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AF demagnetization confirm that CC (especially clay D) contain less iron oxides than NCC. Soft magnetic
phase prevail in all clays (AF demag., Lowrie test) but some amount of high coercivity magnetic mineral
(not detected with Lowrie test) can be suggested for D, E, H and | clays (IRM, after 100 mT exceed 15 %).
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Day plot agree well with the results from
the other analysis indicating significant
mineralogical difference among clays D,
G and E, H, I. The strongest changes in
hysteresis properties are observed for D
and G samples.



Experimental firing

The most prolonged heating/cooling cycle

Single-chamber furnace
(summer)

A#:

— Upper center (T2)
—— Bottom left corner (T3)

Bottpm right corner (T4) |

0 2 4 6 8 10 12 14 16 18 20 22
Time (hours)

The temperatures achieved vary between 400 °C (bottom left
corner) to 540 °C (bottom right corner) displaying very uneven
distribution within the structure after 400 °C.

Reaching T, ., took from 5 h (bottom left corner) to 9 h (bottom

right corner) indicating slow heating rate of 1.4 to 0.8 °/min.

Soaking time at 400 °C vary from 6 min (bottom left corner) to
almost 5 h (bottom right corner).

Cooling to 200 °C took from ~ 6.5 h (bottom left and right
corners) to 8 h (upper center).

Cooling rate variations (calculated for 10 minutes intervals) are
from 1.7 to 0.1 °/min as the highest values correspond to the first
hour.



Open hearth

(summer — first heating)

The most variable conditions

900 - adding fuel
800 - \ e eenter (1) Tonax Was quite different :gg
O Bottom left (T7) within the fireplace — from 200
S igg | —— Bottom right (T8) 410 °C (bottom-left corner) 600
= 400 - to 910 °C (upper center). - Zgg
300 - 300
200 - Average heating rates vary from 200
199 41 to 4 °/min 100
’ 0 1 2 3 )1 5 6 7 (no extra fuel). 0

Time (hours)

T__ were achieved for ~ 2.5 - 3 h (according to

max

the placement of thermocouples) when extra fuel
was added and for ¥ 18 min—-2.5 h

Open hearth
(autumn — reheating)

— Upper center (T5)
——— Upper center (T6)
Bottom left (T7)

Bottom right (T8)

\

adding fuel

0 1 2 3 4 5 6 7
Time (hours)

Soaking time vary from 7 min to almost 3 h at

700 °Cand - from 1 min to 1 h at 800 °C.

Open hearth Bottom end TS

using only the initial fuel. 900 (,utumn — reheating) Uoper center (16
800 -
o Bottom left corner T7
Open hearth_ Bottom end T5 —— Bottom right corner T8
(autumn — reheating) —— Upper center (T6) 600 - \-—\.\\‘-
=20 Bottom left corner T7 & 500 -
800 - ——— Bottom rignth corner T8 400 -
700 - 300 |
600
:6500 | 200 -
- 100 100 - \
| 0 T T T T T T
zgg | 0 1 2 3 4 5 6
j Time (hours)
100 - \
0 :/ ; : : . : ; . Cooling to 200 °C took from 2.5 h to Cooling rate (calculated for 10 min intervals)

Time (hours)

almost 5 h during the summer, but it is
one hour faster during the autumn.

was quite variable ranging from 18 to 7 °/min
within the same cooling process.



Double-chamber kiln
(summer — first heating)

900 -adding fuel Frontpart (T4) T differ from 145 °Cto 7 °Cin
\ \r Backpart (11)  the different parts of the kiln but  spo
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g | . :J 600
< 500 - ’ The highest T, correspond to the -,
400 1 i upper back part of the kiln (T2) and the 400
300 - {
200 U lowest — to the lower back part (T1). 300
200
100

100
0

. Average heating rates vary from

0 22 to 5 °/min (no extra fuel).

Time (hours)

~ 0.5 h-2.5 h according to
the placement of thermocouples (no extra fuel).

7 12
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Double-chamber kiln
(autumn —reheating)
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Cooling to 200 °C lasted 4 — 6 h and does not seems
affected by the weather. Opening the fuel chamber do
not change cooling rate significantly (it took 4-5 h).

The most homogeneous conditions

Double-chamber kiln
(autumn — reheating)

adding fuel

\

= Front part (T4)
Middle part (T3)
Back part (T1)
— Back part - air (T2)

Time (hours)

Soaking time vary from 40 minutes to 2 hours at
700 °C and — from 1 minute to 1 hour at 800 °C.

Double-chamber kiln
(autumn - reheating)

= Front part (T4)
Middle part (T3)
Back part (T1)
‘ — Back part - air (T2)
opening the fuel chamber
0 1 2 3 4 5 6 7 8
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Cooling rate (calculated for 10 minutes intervals) vary
from 7 to 2 °/min within the same cooling process
being the most variable in the first hour.



Bottom part Single-chamber furnace Upper central part

T.. ~400-540° . Teio o ~ 440 °C
(Tirng 400 = 540 °C) The strongest magnetic enhancement corresponds to (Tiin )

l;ggg the samples in the upper part of the furnace and those | I?EEE
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clays and the lowest — for F and G samples. i
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It appears that more SP particles were produced in
the bottom part of the furnace than in the upper | K. (%) ‘
one. Maximum K, values are registered for clay E,
H, | and minimum - for clay D and G.




Single heating

(Tring ~ 790 — 810 °C)
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Open hearth — bottom part

As it was already shown (k-T curves for clay |) single heating
was not enough to complete the mineralogical changes.

Generally magnetic enhancement increases with the number
of firings. Exceptions are clay D and some clay E samples
where lower magnetic signal was measured after reheating
likely due to a creation of low magnetic phase (e.g. hematite).

810 °C 890 °C

Multiple heating

(Thring ~ 810 = 890 °C)

NRM (mA/m)

X (x108m3/kg)
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Due to multiple heating more SP particles were produced as again their
amount is highest for E, H and | clays and lowest for D and G samples.
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Single heating Open hearth — upper part Multiple heating
(Thing ~ 620 °C) Upper and bottom samples again possess different magnetic properties (Tring ™ 860 =500 °C)
: l as the number of firings obviously have different impact. " ‘

= The variability of firing conditions reflect on the magnetic properties [

+ and interfere their summarizing. It appear that multiple heating does
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clays and the bottom case but in clay D these decrease after reheating.
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Concluding remarks:

»

>

Non-magnetic analyzes provide valuable information about the studied clays, which contributes to a better understanding of
their heating behavior.

Although, each clay (being composed of different clay minerals and various impurities) behave in a unique way during firing,
some similarities among the collected clays are found and two main groups stand out. The first one include all brownish NCC
clays (E, H, 1) and the second one is consisted of all CC (D, G and F).

The strongest magnetic enhancement after experimental firings was observed for the non-calcareous clays (E, H, 1). However,
calcareous ones (D, G, F) show highest mineralogical changes after 800 °C laboratory heating, which are likely due to the
calcite breakdown and formation of new high temperature minerals.

Single heating at 700 — 800 °C with about one hour soaking time is not enough to complete mineralogical changes in the
studied clays.

The heating/cooling cycle was the most prolonged in the single-chamber furnace and most homogeneous in the double-
chamber kilns.

The variability of firing conditions within the corresponding structure strongly reflect the magnetic properties of the studied
clays, which determinates the importance of their placement during their baking.

Although, relatively homogeneous firing in the double-chamber kiln, the samples heated in the front part have lower
magnetic enhancement even after their forth reheating likely due to the higher oxygen supply in this part.

The accumulated data for parameters of the firing process agree well with these reported from other researchers (e.g.
Maniatis, Tite, 1981, Livingstone Smith 2001; Carrancho, Villalain 2011; Bintintan, Gligor 2016; Thér et al. 2018, Herve et al.
2019; Francés-Negro 2019; etc.).

Additional experiments are planned to be done to get further deeper insight into the type of magnetic behavior and
processes involved during heating and especially how they affect the recording of the existing magnetic field.
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