Department 1 Physics/Electrical Engineering

EGU 2020, 4-8 May 2020, Session AS3.19: New (Sentinel-5 Precursor) and Evolving (e.g. Sentinel-4) Capabilities to Measure Atmospheric Composition from Space

Sentinel-5 Precursor methane and carbon monoxide column retrievals and assessments related to localized emission sources

Using S5P scientific WFM-DOAS retrievals

Michael Buchwitz, Oliver Schneising, Stefan Noël, Maximilian Reuter, Steffen Vanselow, Heinrich Bovensmann, John P. Burrows

> Institute of Environmental Physics (IUP), Institute of Remote Sensing (IFE) University of Bremen, Bremen, Germany

Outline

- **Essentially overview 3 recent publications** covering
 - Retrieval algorithm, products, validation
 - Selected results, e.g., •
 - CO: Californian fires Nov 2018
 - CH₄: Emissions from major natural gas • and petroleum production fields

https://doi.org/10.5194/acp-2020-274 Preprint. Discussion started: 14 April 2020 © Author(s) 2020. CC BY 4.0 License.

Schneising et al., ACP (in review), 2020

Remote sensing of methane leakage from natural gas and petroleum systems revisited

Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Steffen Vanselow, Heinrich Bovensmann, and John P. Burrows

Atmos. Meas. Tech., 12, 6771-6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. 0 0

Schneising et al., AMT, 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher³, Dietrich G. Feist^{4,5,6}, David W. T. Griffith³, Frank Hase⁷, Christian Hermans⁸, Laura T. Iraci⁹, Rigel Kivi¹⁰, Jochen Landgraf², Isamu Morino¹¹, Justus Notholt¹, Christof Petri¹, David F. Pollard¹², Sébastien Roche¹³, Kei Shiomi¹⁴, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaire A. Velazco³, Thorsten Warneke¹, and Debra Wunch¹³

Atmos. Chem. Phys., 20, 3317-3332, 2020 https://doi.org/10.5194/acp-20-3317-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. <u>
 ()</u>

Severe Californian wildfires in November 2018 observed from space: the carbon monoxide perspective

Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, and John P. Burrows Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

WFM-DOAS (or WFMD) algorithm for S5P

Atmos. Meas. Tech., 12, 6771–6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmospheric Measurement

Schneising et al., AMT, 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher³, Dietrich G. Feist^{4,5,6}, David W. T. Griffith³, Frank Hase⁷, Christian Hermans⁸, Laura T. Iraci⁹, Rigel Kivi¹⁰, Jochen Landgraf², Isamu Morino¹¹, Justus Notholt¹, Christof Petri¹, David F. Pollard¹², Sébastien Roche¹³, Kei Shiomi¹⁴, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaire A. Velazco³, Thorsten Warneke¹, and Debra Wunch¹³

Method:

- Least-squares fit of simulated radiances to S5P radiances
- Very fast Look-Up-Table (LUT) scheme
- Quality flagging (e.g., clouds) and bias correction (only for methane) via Machine Learning (Random Forest; VIIRS for clouds; climatology for methane)
 Products:
- CO columns [molec./cm²] and XCO [ppb]; XCH₄ [ppb]

Differences w.r.t. operational algorithms / products:

- Many as independent algorithms ..., e.g., resulting products:
 - WFMD XCH₄: Typically better coverage (incl. some ocean coverage)
 - WFMD CO: Cloud-free only, XCO in addition to CO column, ...

buchwitz@uni-bremen.de

S5P/WFMD products: Validation

Atmos. Meas. Tech., 12, 6771–6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Schneising et al., AMT, 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher³, Dietrich G. Feist^{4,5,6}, David W. T. Griffith³, Frank Hase⁷, Christian Hermans⁸, Laura T. Iraci⁹, Rigel Kivi¹⁰, Jochen Landgraf², Isamu Morino¹¹, Justus Notholt¹, Christof Petri¹, David F. Pollard¹², Sébastien Roche¹³, Kei Shiomi¹⁴, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaire A. Velazco³, Thorsten Warneke¹, and Debra Wunch¹³

Comparisons with TCCON

XCH₄:

Global offset: -1.4 ppb Random (sgl.obs., 1-sigma): 14 ppb Systematic (site-to-site StdDev): 4.4 ppb

XCO:

Global offset: 4.5 ppb Random (sgl.obs., 1-sigma): 5.1 ppb Systematic (site-to-site StdDev): 1.9 ppb

S5P/WFMD products: Comparison with operational products

Atmos. Meas. Tech., 12, 6771–6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Schneising et al., AMT, 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher³, Dietrich G. Feist^{4,5,6}, David W. T. Griffith³, Frank Hase⁷, Christian Hermans⁸, Laura T. Iraci⁹, Rigel Kivi¹⁰, Jochen Landgraf², Isamu Morino¹¹, Justus Notholt¹, Christof Petri¹, David F. Pollard¹², Sébastien Roche¹³, Kei Shiomi¹⁴, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaire A. Velazco³, Thorsten Warneke¹, and Debra Wunch¹³

- **Overall** reasonable to good agreement
- **CH**₄: WFMD typically better coverage (e.g., also some ocean coverage but also over land)
- **CO:** WFMD much sparser (cloud-free only)

S5P/WFMD CO: Some details ...

Atmos. Meas. Tech., 12, 6771–6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Schneising et al., AMT, 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher³, Dietrich G. Feist^{4,5,6}, David W. T. Griffith³, Frank Hase⁷, Christian Hermans⁸, Laura T. Iraci⁹, Rigel Kivi¹⁰, Jochen Landgraf², Isamu Morino¹¹, Justus Notholt¹, Christof Petri¹, David F. Pollard¹², Sébastien Roche¹³, Kei Shiomi¹⁴, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaire A. Velazco³, Thorsten Warneke¹, and Debra Wunch¹³

TROPOMI/WFMD XCO 20180918

Elevated CO due to various CO emission hotspots (urban areas, steel plants, ...)

S5P/WFMD CO: Californian fires Nov 2018

CAMS - TROPOMI/WFMD XCO 20181111

SSP/WFMD CO: Elevated CO due to fires

Main air quality / health-related conclusion:

Even the most polluted city scenes likely comply with the national ambient air quality standards (10 mgCO/m³ with 8 h averaging time). This finding based on dense daily recurrent satellite monitoring is consistent with isolated ground-based air quality measurements.

_200

∆ XCO [ppb]

100 200

-100

CAMS - TROPOMI/WFMD XCO 20181110

S5P/WFMD XCH₄: A GHG-CCI product

APPLICATIONS

36°N

35°N

34°N

117°W

38°N

Satellites providing clear picture of greenhouse gases

https://www.esa.int/Applications/Observing the Earth/Space for our climate/Satellites providing clear picture of greenhouse gases

S5P/WFMD XCH₄: Methane emissions from gas & oil fields

S5P/WFMD XCH₄: Methane emissions from gas & oil fields

https://doi.org/10.5194/acp-2020-274 Preprint. Discussion started: 14 April 2020 © Author(s) 2020. CC BY 4.0 License.

Schneising et al., ACP (in review), 2020

Atmospheric

Chemistry

and Physics

Remote sensing of methane leakage from natural gas and petroleum systems revisited

Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Steffen Vanselow, Heinrich Bovensmann, and John P. Burrows

Major gas & oil production regions

Table 1. Summary of the emission and production values used to determine the leakage rates (emissions divided by combined oil and gas production). All values have been converted to $kBOE d^{-1}$ as described in Section 2. Also shown are the mean percentage variance contributions to the emission estimates for the relative uncertainty components of Equation 2.

Region	Emissions	Production					Leakage	Variance contributions			
	$(kBOEd^{-1})$	Oil	Gas Oil Gas Oil+Gas			Oil+Gas	(%)	(%)			
		$(kBOEd^{-1})$	$(kBOEd^{-1})$	(%)	(%)	$(kBOEd^{-1})$		E	v, abs	v, dir	$ ho_{dry}$
Permian	81	3897	2197	64	36	6094	1.3	60.2	38.6	0.6	0.6
Appalachia	60	127	5052	2	98	5179	1.2	73.2	26.4	0.2	0.2
Eagle Ford	39	1344	1112	55	45	2456	1.6	64.3	34.7	0.5	0.5
Bakken	23	1361	444	75	25	1805	1.3	64.9	34.5	0.4	0.2
Anadarko	72	548	1237	31	69	1785	4.0	70.8	28.4	0.4	0.4
Galkynysh/ Dauletabad	83	0	1533	0	100	2017	4.1	74.9	21.8	0.5	2.8

buchwitz@uni-bremen.de

Summary & conclusions

- Scientific WFM-DOAS (or WFMD) algorithm to retrieve XCH₄ and XCO from TROPOMI/S5P
- Access to data products (free of charge):
 - S5P WFMD XCO: <u>https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/</u>
 - S5P WFMD XCH₄: <u>http://cci.esa.int/data</u>
- Estimated quality of WFMD products (relative to TCCON): Single observation uncertainty (= root-sumsquare of sgl.obs. random and site-to-site systematic differences):
 - XCH₄: ~15 ppb (~1%); excluding 1.4 ppb global low bias
 - XCO: ~5 ppb (~5%); excluding 4.5 ppb global high bias
- Comparison of WFMD & OPERational products:
 - Overall good agreement
 - Coverage may be significantly different
- As shown in this presentation, we started to use these information rich products to obtain information on various (localized) methane and CO emission sources
- See also: https://www.iup.uni-bremen.de/carbon_ghg/

- Funding:
 - ESA (projects GHG-CCI/GHG-CCI+, S5L2PP, Methane+)
 - German BMBF (project AIRSPACE)
 - State & University of Bremen
- Data:
 - Copernicus (EU / ESA) TROPOMI/S5P products:
 - L1b
 - L2 CH₄ & CO
 - VIIRS-based L2 cloud product for TROPOMI
 - Ground-based validation data: TCCON
 - Meteorological data: ECMWF
 - Other: see publications

