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Transition to a renewable energy system

Availability of global 
renewable energy
exceeds anticipated
needs
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Important constraints

• Climate-driven fluctuations and 
intermittency of renewabe energy

• Spatially uneven energy
distribution

• Technical capacities for energy
storage and transmission



Coordination potential for renewable energy systems
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How is production coordination over a distance R reducing the 

variance in production capacity and energy storage demand?



Project aims

2. Implications of spatiotemporal coordination
a. Quantify virtual energy storage gain due to production coordination
b. Identify incentives in production management models

1. Analyses of the coupling of climate fluctuations and 
hydropower availability
a. Spatio-temporal statistics, including spatial covariation and control of climate indicators
b. Seasonal forecast methods



Simulated runoff data for Europe 
35 years (1981 – 2015) using E-HYPE

E-HYPE
Daily data for the period 01-Jan-1981 to 30-
Nov-2015 and 35,408 sub-watersheds
- Corrected precipitation
- Calculated local runoff from land area
- Evapotranspiration

Geographical data
35,408 watersheds with areas 0.58 m2 - 1.79 x 1010 m2

Total area = 10.18 x 1012 m2

Treated data: Flow direction, elevation, std of elevation, 
central coordinates, etc.
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Model performance

Normalized standard deviation = 1.33 Average for Europe
Normalized standard deviation = 0.36

Lower variance in runoff

☞ Reduced need for regulation
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Mean value= 3588 TWh/year

Coeficient of
variation, CV

Sweden Europe 35,408 
watersheds

Daily time-
series CV(P)

146% 36%

Annual time-
series CV(P)

16% 5.9%

5-year time-
series CV(P)

8.0% 2.4%

Europe
Sweden

3.6 years: Minimum variance

Distribution of variance in hydropower potential on periods

Wörman, Lindström and Riml, 2017. J. Hydrol. 



Differences in temporal pattern of
hydropower availability over Europe

Wörman, et al.. 2020. Under revision 



Climatic control on hydropower availability
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Coherence between power of all runoff in Europe and climate indicators



Beames at al., 2019. http://globaldamwatch.org

Global Reservoir and Dam (GRanD) Database

Selected hydropower system
dams and reservoirs with a storage 
capacity of more than 0.1 km³

q 1,377 dams and hydropower stations
q Production coverage: 366 TWh/y
q Storage coverage: 81,000 GWh

Analysis of potential hydropower 
availability in main river basins

q 3,032 of main river basis with 
effluence to the sea

q Coordination benefits across main 
river basins

http://globaldamwatch.org/
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Spatio-temporal analysis of hydropower balancing

Energy balance equation

q Energy storage, E (J)
q Production power

capacity, pc (W)
q Demanded power, pd (W)
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Frequency-domain energy balance
f = frequency (1/T)
T = 1/f= period
S(…) = power spectral density
N = number of watersheds
e = Energy balance term (considered as constant)

Cross-spectral densities considered
within coordination reach R
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Power availability spectrum

Storage requirement spectrum

Example for pairwise spectra:
Storage requirement and availability spectra
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Period (years)Wörman, et al.. 2020. Under revision 
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0 < Tup < 14 years

0 < Tup < 4.7 years

0 < Tup < 2 years

0 < Tup < 1 year

0 < Tup < 6 months

0 < Tup < 3 months

Energy storage capacity of GranD, 81 TWh

Energy storage demand for all main river basins 
with account taken to the coordination distance, R

140 TWh

DD = Decimal degrees (43.5 - 78.7 km between 67 N to 45 N) 

≈ 3,000 km

= Virtual energy storage gain



Possible acknowledgement of “virtual energy storgage” 
in production optimization models

• Virtual energy storage can give higher profit, and 
• Higher flexibility and safety against energy droughts
• Not used in current production management models
• ”Sub-optimization” within main river basins, but the energy market connects

production across main river basins

New incentives (objectives) for virtual energy storage?
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Ø Hydropower availability varies in Europe on typical periods of 2, 3,6 och 
8 – 11 år

Ø Climat indeces can explain the variation, but the pattern varies between
different regions 

Ø Spatiotemporal coordination of hydropower production can result in a 
virtual energy storage gain (VESG) twice the capacity of existing
hydropower reservoirs

Ø Largest VESG is obtained upto distances of 3,000 km, i.e. on the 
continental scale

Ø A spectral method that can quantify VESG has been developed

Conclusions
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