i

Ly,
EXKTHS

Mot

Anders Worman, KTH — Royal Institute of Technol
Cintia Bertacchi Uvo, Lund University
Luigia Brandimarte, KTH — Royal Institute of Techno
Stefan Busse, Uniper - Sweden

Louise Crochemore, Swedish Meteorological and Hyd
Marc Girons Lopez, Swedish Meteorological and Hydrol¢
Shuang Hao, KTH — Royal Institute of Technology
llias Pechlivanidis, Swedish Meteorological and Hydrological Institute
Joakim Riml, KTH — Royal Institute of Technology

Virtual energy storage-gain due to spatiotemporal
REg2 4 coordination of hydropower over Europe

Letsi Rockfill dam, Lule River




Transition to a renewable energy system

200,000 TWh/y

3,550,000 TWhly
(Trenbeth et al. 2009)
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Coordination potential for renewable energy systems
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How is production coordination over a distance R reducing the

variance in production capacity and energy storage demand?



Project aims

1. Analyses of the coupling of climate fluctuations and
hydropower availability

a. Spatio-temporal statistics, including spatial covariation and control of climate indicators

b. Seasonal forecast methods

2. Implications of spatiotemporal coordination

a. Quantify virtual energy storage gain due to production coordination

b. Identify incentives in production management models



Simulated runoff data for Europe

35 years (1981 — 2015) using E-HYPE
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Power spectral Density

Potential energy of runoff in Europe
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Normalized Power spectrum

Power spectrum

Normalized Power spectrum

Differences in temporal pattern of
hydropower availability over Europe
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Climatic control on hydropower availability

Coherence between power of all runoff in Europe and climate indicators
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Global Reservoir and Dam (GRanD) Database

Selected hydropower system
dams and reservoirs with a storage
capacity of more than 0.1 km?

S %h,q 1,377 dams and hydropower stations
h 4 Production coverage: 366 TWhly
-'?~! =0 Storage coverage: 81,000 GWh

oo

- Analysis of potential hydropower
availability in main river basins

O 3,032 of main river basis with

Beames at al., 2019. http://globaldamwatch.org efﬂuence J_[O the Sea_ _
[ Coordination benefits across main

river basins



http://globaldamwatch.org/

Spatio-temporal analysis of hydropower balancing

Energy storage domain
d Energy storage, E (J)

- Produ.ctlon POWET Power demand domain
capacity, p. (W) .

Power availability domain

d Demanded power, p, (W)

Frequency-domain energy balance

f = frequency (1/T)

N N
SCEWEEOW TS
S(...) = power spectral density t=1 i

N = number of watersheds Cross-spectral densities considered
¢ = Energy balance term (considered as constant) within coordination reach R



Example for pairwise spectra:
Storage requirement and availability spectra

F2S(E) = S(Pc1) + S(Pc2) + Re{S(P.i; P j)}
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Energy storage demand for all main river basins
with account taken to the coordination distance, R
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Flow [m3/s]

Possible acknowledgement of “virtual energy storgage”
in production optimization models

e Virtual energy storage can give higher profit, and

* Higher flexibility and safety against energy droughts

* Not used in current production management models

e ”Sub-optimization” within main river basins, but the energy market connects
production across main river basins

New incentives (objectives) for virtual energy storage?

Actors:
Power companies
Energy market 1 Authorities Energy market 2

Optimal production
decision:

* Production profit

* Stored water value

]

Optimal production
decision:
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Conclusions

>

Hydropower availability varies in Europe on typical periods of 2, 3,6 och
8—11ar

Climat indeces can explain the variation, but the pattern varies between
different regions

Spatiotemporal coordination of hydropower production can result in a
virtual energy storage gain (VESG) twice the capacity of existing
hydropower reservoirs

Largest VESG is obtained upto distances of 3,000 km, i.e. on the
continental scale

A spectral method that can quantify VESG has been developed
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