Tracking the global flows of atmospheric moisture and associated uncertainties

> Obbe Tuinenburg (UU, SRC) Arie Staal (SRC)

Email: O.A.Tuinenburg@uu.nl

Stockholm Resilience Centre Sustainability Science for Biosphere Stewardship

Netherlands Organisation for Scientific Research

로▶ 문

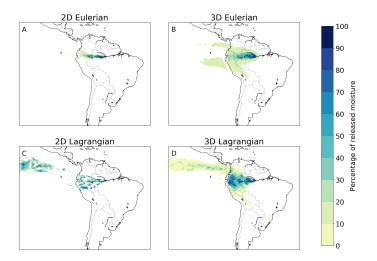
・ロト ・ 日下・ ・ ヨト

Rationale

- Many studies determine atmospheric moisture recycling using post-processing schemes to reanalysis
- However, the sensitivity to the assumptions that go into these models have never been tested
- With the recent release of ERA5 reanalysis data, these assumptions should be tested

This work is accepted in HESS:

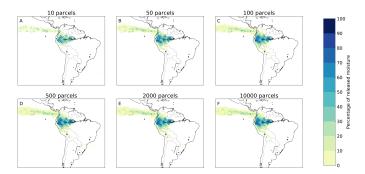
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-597.


Study

Here we test moisture tracking assumptions regarding:

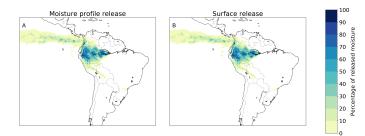
- 1. Model structure
- Number of parcels released
- 3. Release height into the atmosphere
- 4. Internal interpolation
- 5. Number of vertical data layers
- 6. Horizontal resolution
- 7. Internal timestep
- 8. Vertical atmospheric mixing
- The following results are for evaporation released from Manaus, Brazil in July 2012, with ERA5 forcing.

Model Structure

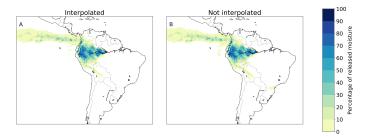


Significant differences between Lagrangian and Eulerian models. 3D versions much better than 2D.

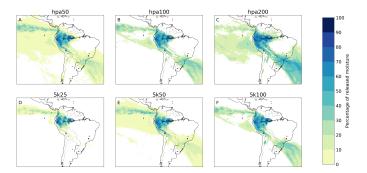
Universiteit Utrecht


Number of Parcels

More than 50 Lagrangian parcels per mm does not add a lot of value.


Release height

Release height is not very influential.

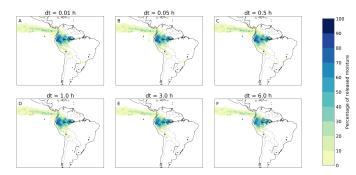

Interpolation

Minimal difference between interpolated and non-interpolated simulations.

Vertical resolution of forcing data

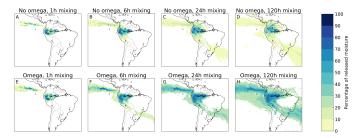
Simulations degrade strongly with degrading vertical resolution.

Horizontal resolution of forcing data



Less so for horizontal resolution degradation.

Universiteit Utrecht


Internal time step

Internal model timestep is not very influential.

Vertical mixing during the simulation

Vertical mixing assumptions have strong influence on moisture recycling.

Conclusion

- Atmospheric moisture recycling estimates may differ significantly, depending on model assumptions
- The vertical mixing assumptions are the most influential model assumptions
- The vertical resolution is the most influential on the forcing data side

For more information, please contact Obbe Tuinenburg (O.A.Tuinenburg@uu.nl)

See Tuinenburg and Staal, 2020 (HESS) for more elaborate results.

