Now

Using Phase-Annealing to generate surrogate discharge time series

Authors: Faizan Anwar and András Bárdossy

Institute: Department of Hydrology and Geohydrology, Institute for Modelling Hydraulic and

Environmental Systems

University: University of Stuttgart

Project: SPATE (SP5), DFG Research unit FOR 2416

EGU session: HS 3.6, Wednesday, May 6, 10:45-12:30

Poster: EGU2020-7955

Email: faizan.anwar@iws.uni-stuttgart.de

Phase Annealing

- Simulated Annealing
- Phase Randomization
- Anneal phases
- Advantages
 - Better multisite conditional distributions of extremes
 - Non-Gaussian dependence structure
 - Longer series (anneal magnitudes)
- Disadvantages
 - Types of objective functions
 - Very high number of dimensions

 A comparison between Phase Randomization (as a reference) and Phase Annealing is shown here

Universität

Stuttgart

- The results are for discharges at two sites having a length of two years on a daily scale
- Non-Gaussion differences in dependences are highlighted

Universität

Stuttgart

Comparison

Phase Randomization

- √Spatio-temporal correlation
- **X**Gaussian copula
- ✗Incorrect Nth-order differences
- ✗Incorrect copula asymmetries
- ✗Incorrect copula entropies
- Time series with unnatural properties
- ✓ Simulation run time (almost) independent of time series length

Phase Annealing

- √Spatio-temporal correlation
- ✓Non-Gaussian copula
- ✓ Correct Nth-order differences
- √Correct copula asymmetries
- ✓ Correct copula entropies
- √Time series with natural properties
- ★Simulation run time dependent on time series length

Universität

Stuttgart

Objective functions

- Non-Gaussianess
- Asymmetries
 - At least two directions
 - Single-site
 - Multi-site
- Nth order differences
- Entropies
 - Obtained indirectly
- Correlations
 - Spearman
 - Pearson

- Properties that show deviation from the multivariate Normal copula should be used
- Instead of using single objective values, distributions of deviations should be used (more robust)

Simulation properties, Single-site (Phase Randomization)

10

Lag steps

ref

sim

10

Lag steps

ref

sim

Multi-site simulation

- Multiple points
 - In time
- Apply same phase changes
 - To all points
 - Keep ΔPhase constant
- Asymmetry 1 more important
- Phase randomization
 - May keep asymmetry 1
 - Loses entropy/structure

- The empirical copula or the simulated time series can be used to make conditional distributions of extremes at any location for any time lag
- The results shown next are for no time lag between the two sites

Universität

Stuttgart

Longer time series

- Longer than reference
- Anneal missing amplitudes
 - In addition to phases
- Concatenate simulations
 - For specific cases only
- Better upper tail
- Not shown here

 Magnitudes of frequencies having periods longer than the seasonal cycles should be annealed carefully as they might represent natural cycles e.g. The annual cycle

That was all from our side. Thanks.

Python implmentation: github.com/faizan90/phsann

Universität Stuttgart

References

- Hörning, S., & Bárdossy, A. (2018). Phase annealing for the conditional simulation of spatial random fields.
- Guthke, P., & Bárdossy, A. (2017). On the link between natural emergence and manifestation of a fundamental non-Gaussian geostatistical property: Asymmetry.
- Hörning, Sebastian, Bárdossy, A., & Mosthaf, T. (2016). How to determine spatial irreversibility: directional asymmetry.
- Rodríguez-Fernández, J., & Bárdossy, A. (2015). Entropy measure for the quantification of upper quantile interdependence in multivariate distributions.
- Bárdossy, A. (2006). Copula Based Geostatistical Models for Groundwater Quality Parameters.