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• Catchments store and release water of different ages. 

• The age of a water parcel has big implications for understanding flow 
and transport mechanisms (Botter et al., 2011; Sprenger et al., 2019).

• The water-age based concept, the formulation of transport by transit 
time distributions (TTDs), has been emerging as a useful tool for 
understanding catchment-scale solute export (Sprenger et al., 2019).
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 Formulation of transport by transit time distributions
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• TTD-based models have been used to explore solute export at the 
catchment scale, including nitrogen legacy (Ilampooranan et al., 2019; van Meter et al., 

2018; 2017). 

• These models assume that TTDs are time-invariant.

• Experimental data and numerical studies have indicated that TTDs 
(e.g., for discharge) are time-variant for many hydrological systems 
(Yang et al., 2018a; Kaandorp et al., 2018; Rodriguez et al., 2018; Kim et al., 2016; van der Velde et al., 2012).
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Concept of the SAS-based approach (Harman et al., 2015)
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• StorAge Selection (SAS) function is a transformed TTD function.

• SAS functions have a clearer physical meaning and are more stable in 
time, easier for parameterization than TTDs (van der Velde et al., 2012)

• SAS functions could be combined with storage-discharge functions to 
provide a coherent framework for describing both velocity and 
celerity transport mechanisms (Harman et al., 2019; Hrachowitz et al., 2016)

Spatial heterogeneity of catchment characteristics and large scale 
testing have not been addressed with the SAS-based model.
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• Introducing a new model, allowing a distributed representation of 
soil nitrogen dynamics and a spatially implicit representation of 
subsurface transport pathways based on the SAS-based approach.

• Validating the proposed model at a mesoscale catchment with 
heterogeneous characteristics.
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• a grid-based water quality (nitrate) model (Samaniego et al., 2010; Kumar et al., 2013; 

Lindström et al., 2010; Yang et al., 2018b).

• accounts for spatial heterogeneity in land use management practices 
(fertilizer/manure application, crop rotation).

• has a simple subsurface nitrate transport module (no denitrification 
below the root zone, inadequate representation of celerity-driven 
transport).

→ Replace the subsurface transport module with the SAS-based concept
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Conceptual model of (a) the mHM-Nitrate model and (b) the proposed mHM-SAS model at a grid cell level
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Master equation for the SAS compartment

Solute (nitrate) concentration at the outlet

inflow outflow

TTD of discharge

aging

changes of the 
water volume 
in storage 
with age ≤ 𝑇

Half life of nitrate

SAS compartment: unsaturated and saturate zone below the root zone over the whole catchment

Inflow J(t)

Outflow Q(t)

TTD of discharge

𝑃𝑄 𝑇, 𝑡 = Ω𝑄 𝑃𝑆 𝑇, 𝑡 , 𝑡

SAS function

normalized age-ranked storage
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Location of the upper Selke with (a) the digital elevation model (DEM), (b) land 

use/land cover map, and (c) soil map. The catchment outlet is indicated by a black dot. 
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• Catchment area: 100 km2 (61% forest, 36% agricultural)

• Main crops: winter wheat, triticale, winter barley, rye, rapeseed, corn.

• Fertilizer/manure application rate: 130 – 190 kg N/ha/yr

• Strong seasonality in runoff regime

• Chemodynamic C(nitrate)-Q relationship



 Representation of the time-variant SAS functions
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• Two-parameter beta function 𝑏𝑒𝑡𝑎 𝑃𝑆, 𝑎, 𝑏

• Two beta functions are used to characteristics of the time-variant 

SAS functions: 𝑏𝑒𝑡𝑎𝑤𝑒𝑡 𝑃𝑆, 𝑎𝑤𝑒𝑡 , 𝑏𝑤𝑒𝑡 , and 𝑏𝑒𝑡𝑎𝑑𝑟𝑦 𝑃𝑆, 𝑎𝑑𝑟𝑦, 𝑏𝑑𝑟𝑦

• The wet and dry periods are defined based on the following factor:

𝑟𝑡 =
 𝑖=𝑡−𝑛

𝑡 𝐽𝑖
 𝑖=𝑡−𝑛

𝑡 𝑄𝑖

𝑟𝑡 ≥ 1 → 𝑤𝑒𝑡 → 𝑏𝑒𝑡𝑎𝑤𝑒𝑡 : Young water selection preference
𝑟𝑡 < 1 → 𝑑𝑟𝑦 → 𝑏𝑒𝑡𝑎𝑑𝑟𝑦: Old (and young) water selection preference

Inflow to the SAS compartment

Outflown: number of time steps



 Simulated discharge and in-stream nitrate (𝑁 − 𝑁𝑂3) concentration 
at Silberhütter
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half life of nitrate = 134 days



 Simulated spatial nitrogen dynamics within the root zone
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 SAS functions –subsurface storage – nitrate concentration – median TTD of 
discharge

Introduction Methodology Case Study Results & Discussions Conclusions

15EGU2020, 6th May 2020



Introduction Methodology Case Study Results & Discussions Conclusions

16EGU2020, 6th May 2020

• Denitrification below the root zone should be accounted for.

• Discharge and in-stream nitrate concentration dynamics at the 

catchment outlet could be well represented by the proposed model

• The mHM-SAS model could provide explicit spatial information about 

soil nitrogen 

• The mHM-SAS model can represent the relation between the SAS 

function, storage, and median TTD of discharge in a qualitative and 

reasonable manner.
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• Outlook

– Quantitative verification of the simulated travel time and spatial 

nitrogen dynamic within the root zone

– Testing of the model for catchments with nitrogen legacy 

(velocity-driven transport)
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Thank you for your attention 

Questions and Suggestions are welcome 


