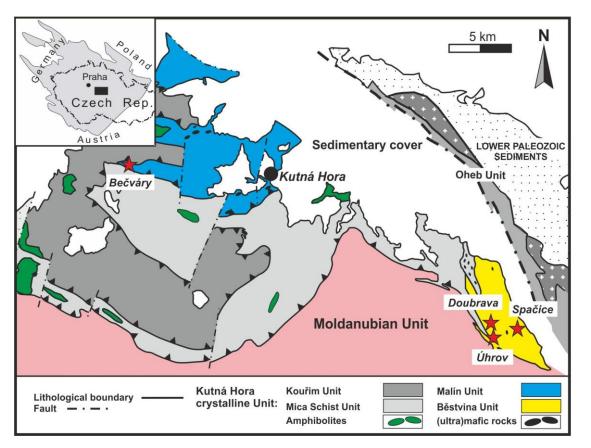
Petrogenesis and Lu–Hf dating of (ultra)mafic rocks from the Kutná Hora Crystalline Complex: implications for the Devonian evolution of the Bohemian Massif

Jana Kotková, Lukáš Ackerman, Renata Čopjaková, Jiří Sláma, Jakub Trubač, Veronika Dillingerová


Czech Geological Survey, Prague, Czech Republic Institute of Geology, Czech Academy of Sciences, Prague, Czech Republic Department of Geological Sciences, Masaryk University, Brno, Czech Republic Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Prague, Czech Republic Department of Chemistry, Masaryk University, Brno, Czech Republic

EGU2020: Sharing Geoscience Online

Kutná Hora Crystalline Complex Bohemian Massif, eastern part of the European Variscan Belt

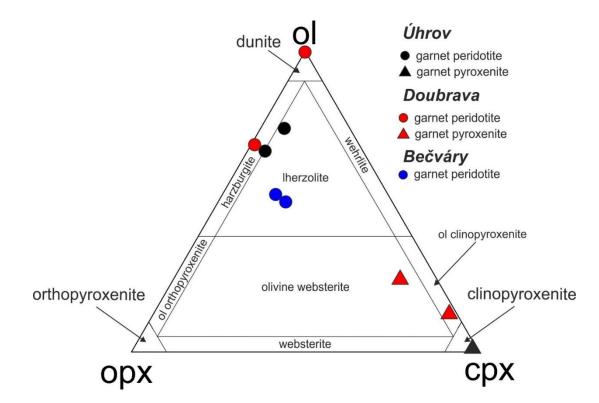
UHP terrane

fragments/boudins of garnet peridotites, pyroxenites, eclogites Medaris et al. 2005, Faryad 2009, Faryad et al. 2009 UHPM rocks (diamond, coesite, Perraki – Faryad 2014)

= deep subduction

geochronological data 380-360 and 340-330 for both mantle and crustal rocks

= complete geochronological record


key area for studying crust-mantle interaction and constraining geodynamic evolution of the Bohemian Massif

new Lu–Hf geochronological data for (ultra)mafic rocks interpreted based on a detailed study of petrography, multiphase solid inclusions in garnet, and mineral trace element composition and zoning

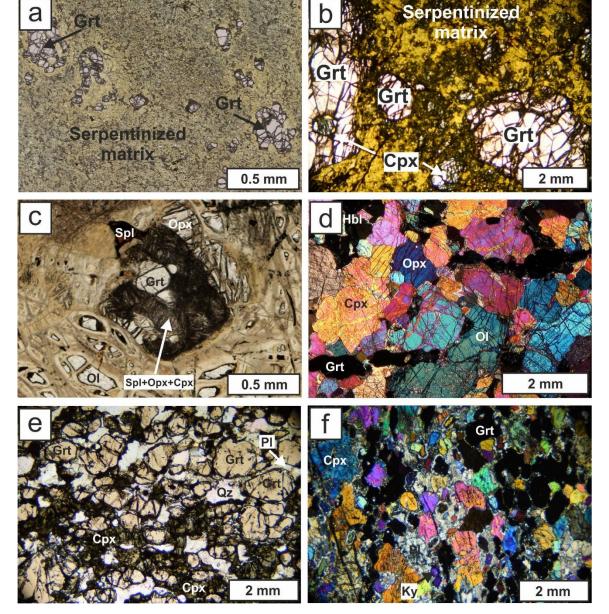
whole-rock major and trace element compositions and Sr–Nd–Hf–Os isotopic systematics = extent, environment and timing of depletion and enrichment/refertilization of the KHCC peridotites

Studied samples: mineral assemblages and modal composition

Table 1: Summary o	of the studied samples f	from the Kutná Hora Crystaline C	Complex and	ł		
their modal compos	sition					
Sample	Locality	Lithology	Bulk r	Bulk modal composition (wt. %)		
			OI	Орх	Срх	Grt
Peridotites						
Uhr17a	Úhrov	Grt Lherz	68	17	6	8
Uhr17b	Úhrov	Grt Lherz	62	26	5	7
Doub4	Doubrava	Spl±Grt Dun	>95	<5	<5	<5
Doub5	Doubrava	Spl-Grt Harz	69	30	1	<1
Bec1	Bečváry	Grt Lherz	42	26	12	19
Bec2	Bečváry	Grt Lherz	36	22	14	28
			Bulk r	Bulk modal composition (wt. %)		
Pyroxenites			OI	Орх	Срх	Grt
Uhr17c	Úhrov	Grt Clinopyroxenite		<1	56	54
Doub2	Doubrava	Ol-Grt Webs	23	10	62	5
Doub2b	Doubrava	Ol-Grt Clinopyroxenite	12	2	80	6
			Bulk r	Bulk modal composition (wt. %)		
Eclogites			Срх	Grt	Pl	Qz
Urh_E	Úhrov	Ky Eclogite	15	37	16	32
Doub7	Doubrava	Eclogite	36	59	5	
Sp1f	Spačice	Ky Eclogite	60	25	15	
Sp1-16	Spačice	Ky Eclogite	7	53	19	21

Ol - olivine, Opx - orthopyroxene, Cpx - clinopyroxene, Grt - garnet, Pl - plagioclase, Spl - spinel

Qz - quartz, Ky - kyanite, Iherz - Lherzolite, Harz - harzburgite, Dun - dunite, Webst - websterite



Studied samples: textures and major phases

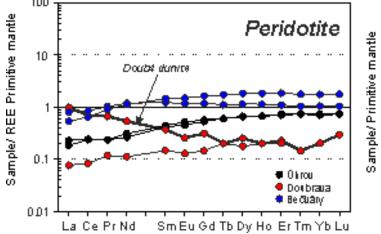
garnet lherzolite Úhrov

spinel-garnet harzburgite Doubrava

kyanite eclogite Úhrov

garnet lherzolite Bečváry

olivine-garnet websterite Doubrava

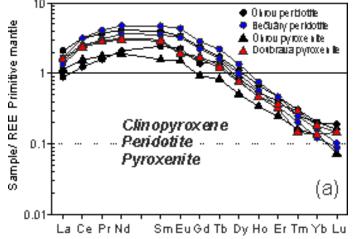

kyanite eclogite Spačice

Petrogenesis of peridotite-pyroxenite assemblages and Lu-Hf dating

garnet Iherzolite, Úhrovdepleted oceanic asthenospheric mantle395 ± 23 Ma Grt-Opx+Cpx-Cpx-WR

low Cpx abundances (5–6 wt. % and ~1 wt. %), low Al_2O_3 and CaO 10 - 20 % partial melting LREE-depleted patterns

garnet lherzolite, Bečváry


extensive refertilization by basaltic melts associated with Grt±Cpx precipitation

```
up to 28 % of garnet – high Al_2O_{3} low OI content , Cpx in garnet
low Mg #
low Os and high <sup>187</sup>Re/<sup>188</sup>Os
```

highly to mildly radiogenic Sr–Nd–Hf–Os isotopic compositions

+ negative HFSE anomalies in clinopyroxene

indicate only a very small contribution of recycled crustal component

multiphase solid inclusions (MSI) trapped in garnet, dominated by Ti and Fe-Ti oxides (rutile, ilmenite), represent relics of Ti-rich low-degree basaltic partial melt

minor hornblende/phlogopite and carbonate reflect mantle metasomatism by $H_2O\pm CO_2$ -bearing fluids

Petrogenesis of peridotite-pyroxenite assemblages and Lu-Hf dating

Doubrava peridotites interaction between depleted protolith and SiO₂-undersaturated infiltrating basaltic melt with small proportion of recycled crust (~5 % when subducted oceanic crust is considered)

marked petrological variability = harzburgite to composite dunite-wehrlite/olivine-bearing pyroxenite LREE and Fe enrichment of dunite

radiogenic present-day ¹⁸⁷Os/¹⁸⁸Os signature and the most pronounced HFSE negative anomalies in pyroxenites

products of high-pressure crystal accumulation from mantle-derived basaltic melts, or a fragment of MORB-like

gabbroic cumulate and crustal-derived material both metamorphosed at HT–HP conditions

Proposed refined geodynamic model

~ 400 Ma subduction of the oceanic crust and associated oceanic asthenospheric mantle beneath the Teplá–Barrandian related to closure of the Saxothuringian ocean between Gondwana-derived microcontinents

overlaying lithospheric mantle wedge was refertilized by fluids/melts

~ 370–360 Ma? continental subduction of the Saxothuringian crust accompanied by the break-off of the eclogitized oceanic crust facilitating incorporation of the upwelling asthenospheric mantle into the Moldanubian lithospheric mantle wedge

~ 350–330 Ma collision and coeval exhumation of mantle and crustal rocks might be associated with mixing/mingling of crustal-derived melts and mafic lithologies producing the observed geochemical and geochronological signatures

