Naturally CO₂-rich groundwater springs in Belgium evidencing complex subsurface interactions

Kris Welkenhuysen¹, Agathe Defourny^{2,3}, Arnaud Collignon³, Patrick Jobé³, Alain Dassargues², Kris Piessens¹, <u>Renata Barros¹</u>

¹ Royal Belgian Institute of Natural Sciences, Geological Survey of Belgium, Jennerstraat 13, 1000 Brussels, Belgium; ² University of Liège, Hydrogeology, Urban and Environmental Engineering, Quartier Polytech 1, Allée de la Découverte, 9, Bât. B52 - Sart Tilman 4000 Liège, Belgium; ³ Spadel S.A., Water resource department, Rue Auguste Laporte 34, B-4900 Spa, Belgium

A story of water and bubbles

Numerous naturally ferruginous and CO₂-rich (up to 4g/L) springs, locally known as **pouhons**, occur in the Belgian Ardennes

These waters have attracted economic and touristic interest for centuries, being exploited since the 14th century and bottled and exported since the 16th century

Where is the CO₂ coming from?

Two main hypotheses:

a) Generation by dissolution of carbonate rocks and/or carbonate nodules at depth

Crustal (heavy) C isotopic signature in CO_2

Unconfirmed presence of carbonate rocks at depth in the area

b) Volcanic degassing related to the neighbouring Eifel area in Germany

Mantle He isotopic signature in CO_2

No magmatic reservoir known at depth in the BE side

Physico-chemical characterisation of spring waters and understanding of the geotectonic evolution of the region remain largely unrelated

References:

1] Fielitz, W., 1992. Variscan transpressive inversion in the northwestern central Rhenohercynian belt of western Germany. Journal of Structural Geology 14, 547-563. 2] Vanbrabant, Y, 2001. Evolution géodynamique de la partie orientale de l'allochtone de l'Ardenne. Observations structurales et modélisations numériques. PhD thes Iniversité de Liège, Faculté des Sciences, 350 p. 3] Monjoie, A., 1997. Etude des eaux carbogazeuses du sud-est de la Belgique. Grant Spadel report 971, 51 p.

Spadel internal data. Griesshaber, E., O'Nions, R.K. & Oxburgh, E.R., 1992. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chemical Geology 99, 213-235. [6] Barros, R., Defourny, A., et al. (under review) A review of the geology and origin of CO2 in mineral water springs in southeast Belgium. Geologica Belgica.

Keep posted: https://geoera.eu/blog/category/geo-energy-theme-posts-and-events/geoconnect3d-posts/

Funding by the ROSEAU project (Walloon program « Doctorat en Entreprise »), co-funded by the SPW Région Wallonne of

Belgium and the company Bru-Chevron S.A. (Spadel group), under grant No 7984

Acknowledgements:

ues. PhD thesis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166