EGUSEy 2020  online | 4-8 May 2020
Geochemical and isotopic characterization of the recent magmatic activity
of the Dilo-Dukana and Mega volcanic fields (Ririba rift, southern Ethiopian Rift)

Eleonora Braschi !, Zara Franceschini 23, Raffaello Cioni 3, Giacomo Corti %, Federico Sani 3 and Ameha Muluneh 4

1. Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche 2. Dipartimento di Scienze della Terra, Universita degli Studi di Pisa 3. Dipartimento di Scienze della Terra, Universita degli Studi di Firenze
2. 4. School of Earth Sciences, Addis Ababa University
e-mail: eleonora.braschi@igg.cnr.it

Namalts
I swimandanin T VB
I cucomoy oones 5 v et
[ oo i © Sommingsios
[ Lgtooone: s

B KArage (Brteu of ol 1984)
BB oo st L i 1609

The Ririba rift represents the southern termination of
ACTm the Main Ethiopian Rift and formed from the
Homat southward propagation of this latter (Fig.1) during, or
7 mi shortly after, the emplacement of subalkaline basalts
that produced a widespread basaltic lava basement, at

~3.7 Ma

The activity of the Ririba rift was short-lived and ceased
between 2.8 and 2.3 Ma, when deformation migrated
westward into an oblique, throughgoing rift zone
directly connecting the Ethiopian and Kenyan rifts.

Rifting was followed by the eruption of limited volumes
of Late Pleistocene-Holocene alkaline basalts,

Fig. 1 Schematic fault pattern and presnt-day plte

kinematics of the East African Rift. The studied area is associated to several, monogenetic volcanic centres, 37°20" "377a0°

located within the area enclosed in the white square and forming the Dilo-Dukana and Mega volcanic fields (VF N o . . Cep s
showed in panel B. The black square indicate the ! g 8 ( ) Fig. 2 Geo!ogy of thfe R}rlba rift (modlﬁed from Corq et' al., 2019; Shinjo et al.,
investigated region of Diol and Mega showed in Fig. 2. (F|g.2). 2011). White boxes indicate the Dilo and Mega vlcanic fields.
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Fig. 5 Sr vs Nd isotope results of selected samples compared to selected literature 0 TN & L v
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Dilo-Dukana VF products are isotopically homogeneous and clustered around 87Sr/ |~ L 380
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lavas and pyroclastics display a small but wider variability, partially overlapping the
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