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For efficient management of a Dutch surface water reservoir, (sub)seasonal forecasts of the fluxes going in and out of the reservoir would be very helpful. Previous research has shown promising streamflow forecast skills, which can be
exploited to forecast discharge or river IJssel, the main influx. We analyse multiple seasonal discharge forecasts with different underlying hydrological models, bias-correct them using quantile mapping and analyse various metrics of the
forecast quality.

Background
For efficient management of a
Dutch surface water reservoir,
(sub)seasonal forecasts of the fluxes
going in and out of the reservoir
would be very helpful. Local me-
teorology is known to be poorly
predictable, but for river discharge,
the main influx, higher forecast
skills have been shown. We investi-
gate to what extent the level of detail
in hydrological modelling affects
forecast skill.
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Figure 1: IJssellake with the river IJssel (a dis-
tributary of the Rhine) flowing into it.

Data
Wecollected streamflow (re)forecasts from ECMWFSEAS5, EFAS and SMHI-
HYPEWeb for the location Lobith, where the river Rhine enters the Nether-
lands (Figure 1). About 15% of the Rhine discharge (during low discharge)
enters the IJssel lake through the IJssel. For ECWMF, we aggregated the
runoff from the ECMWF model over the Rhine catchment. In EFAS, the hy-
drological model LISFLOOD is run at 5x5 km2 and SMHI-HYPEWeb is based
on the semi-distributed HYPE model, with an average catchment size of
1000 km2 (Arheimer et al., 2020). We consider reforecasts from 1993-2015
and operational forecasts for the (exceptionally dry) summer of 2018.
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Figure 2: Qantile mapping for forecasts starting at July1𝑠𝑡. Upper row shows CDF of EFAS
(blue), HYPE (magenta), ECMWF (red) and observations (black) for lead times of 0, 2, 4
and 6 months where 0 indicates average discharge over an entire month, forecasted at the
first of that month. The lower row shows the resulting multiplication factors.

Bias correction
We apply quantile-mapping for bias-correcting the hindcasts, by calculat-
ing the Cumulative Density Function (CDF) by counting occurences in 2%
percentile bins (as in e.g. Wetterhall et al., 2015). Per bin, this results in a
multiplication factor using which the forecasts are corrected (Figure 2).

Metrics
For all hindcasts, with and without bias correction, we calculated a num-
ber of metrics on each target month and lead time of monthly aggregated
discharge values (Arnal et al., 2018; Figure 3), using observed discharge cli-
matology as a benchmark.
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Figure 3: Schematic representation of forecast metrics.
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Figure 4: CRPS (left), IQR (right), MAE (left) and AUROC (bottom) for all hindcasts, with
and without bias correction. For the first four, forecasts for the relevant (dry season) months
are shown.

Results for hindcasts
Figure 4 shows the metrics as a function of lead time, for selected target
months. The threshold for defining the AUROC is underexceedence of the
lower tercile (33% percentile) of the observations in a given month.
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Largest skill is present in spring and early summer, when discharge seems
predictable up to four months ahead. Presumably this is due to the Alpine
snow pack. Later in the summer, when discharge is rain-dominated, the
skill is much lower and deteriorates after about 2 months. Still this is
higher than when precipitation alone is considered. The bias correction
improves the sharpness, and as expected, the accuracy of the forecast to a
large degree: both the spread and the bias become much smaller. Also the
CRPS increases by bias-correction. Here we see an interesting difference
between the datasets: earlier in summer HYPE and ECMWF have higher
and longer skills, whereas in late summer EFAS shows the highest values.

Summer of 2018
For EFAS and ECMEF SEAS5, we also use operational forecasts for the sum-
mer of 2018. We bias-corrected the forecasts using the multiplication fac-
tor from earlier. Figure 6 show the observed streamflow with ensemble
means of EFAS and ECMWF, both corrected and uncorrected. Also a tercile
plot is shown, where the blue bars indicate the probability of underexcee-
dence of the lower tercile, where horizontally the lead time is shown in

months.
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Figure 5: Example of operational forecasts for 2018. Shown forecasts are for April 1𝑠𝑡 2018,
together with observations. The grey area indicates the spread over all forecasts.
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Figure 6: Example of a probabilistic display: the blue bar indicates underexceedence of
the lower tesrcile, i.e., below normal discharge. The black line is the observed realistation,
the number indicates the RPSS, consistent with those thresholds. EFAS (top) and ECMWF
(bottom) are shown, both bias-corrected.

Discharge in 2018 was exceptionally low, so that bias correction in fact
worsened the forecast late in summer. Still, in this case some skill was
present up to 4 months ahead.

Conclusion and outlook
Depending on the season, there is indeed forecast skill streamflow fore-
casts up to 3, sometimes 4 months ahead. EFAS seems to have higher skill
in late summer, SMHI-HYPEWeb in spring, possibly hinting at differences
in snow modelling. Next, we plan to include WFLOW, a distributed high-
resolution hydrological model, forced by ECMWF SEAS5, and explore sta-
tistical postprocessing tools other than quantile mapping.
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