Eawag: Swiss Federal Institute of Aquatic Science and Technology

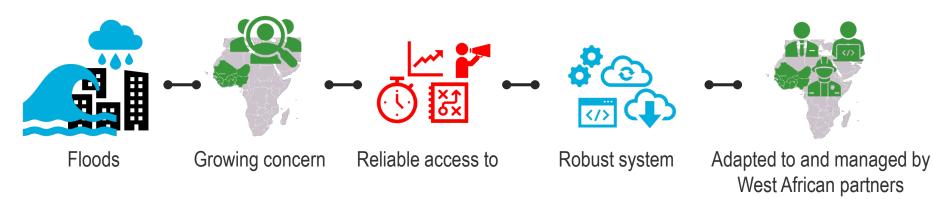
Co-designing a flood forecasting and alert system in West Africa with decision-making methods: the transdisciplinary project FANFAR

Dr. Judit Lienert

Co-authors: Dr. Jafet Andersson Dr. Francisco Silva Pinto

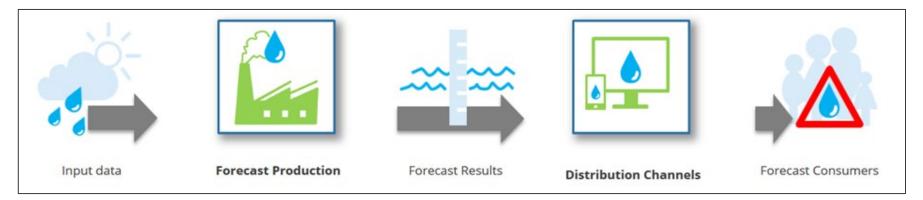
EGU General Assembly 2020 © Authors. All rights reserved

https://doi.org/10.5194/egusphere-egu2020-8127



FANFAR: ReinForced cooperAtion to provide operatioNal Flood forecasts & Alerts in West AfRica

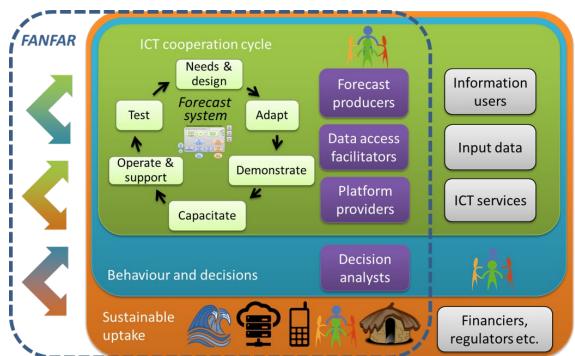
- Flooding is a growing concern in West Africa
- Great need for reliable access to operational flood forecasts and alerts
 - ... produced by a robust ICT system
 - ... adapted to regional conditions
 - ... operated by capable West African institutions



FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

The operational forecasting chain used in FANFAR

- Each day a new hydrological forecast is produced and distributed to enable productive applications in West Africa
- FANFAR aims to enhance the capacity of West African institutions to forecast, alert for and manage floods
- FANFAR system is developed by West African and European consortium partners

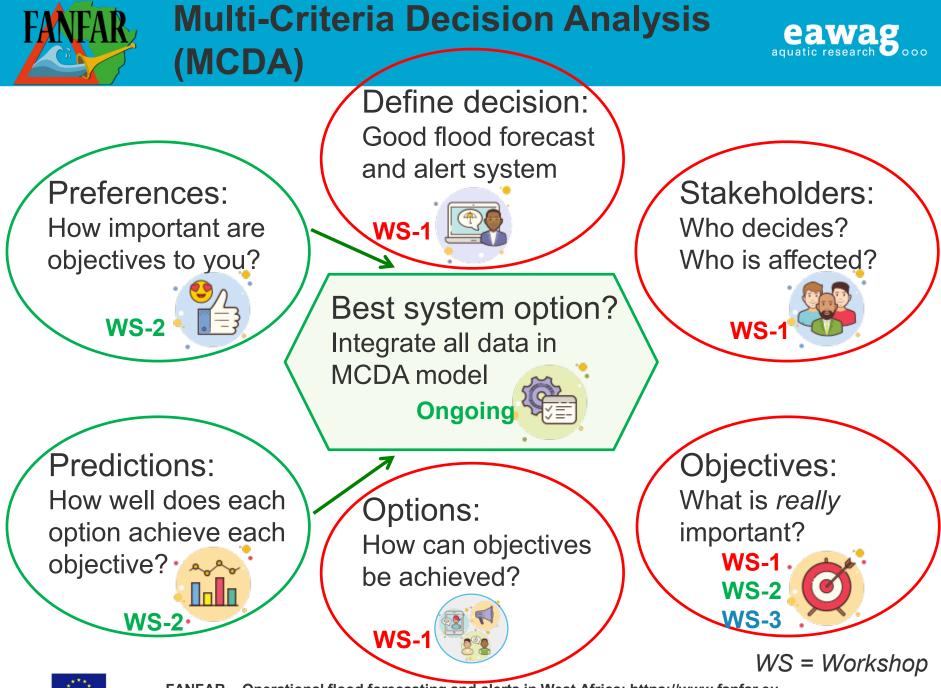


FANFAR co-development process

- FANFAR system is discussed and co-developed with representatives of 17 West African countries
- Four 1-week workshops are carried out in West Africa
- Around 30 to 50 participants: regional and national hydrological

services and emergency management services

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu


FANFAR co-development process led by decision analysts from Eawag

Problem structuring and decision analysis methods:

- Stakeholder analysis (who is important / who is affected?)
- Different problem structuring methods to define objectives (what is important when developing a forecast & alert system for West Africa?) and system configurations (what options?)
- Participatory Multi-Criteria Decision Analysis (MCDA) to select best-performing system configurations
- Research on effective flood warning & risk communication by Dr. Martijn Kuller (see Monday session: EGU2020-9425 <u>https://doi.org/10.5194/egusphere-egu2020-9425</u>)

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

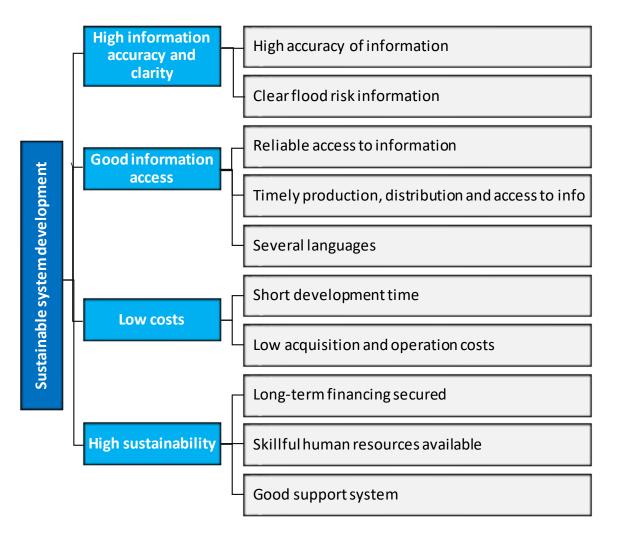
Objectives: Questionnaires & workshops

Aim: Produce operational flood forecasting and early warning system in FANFAR that is well-accepted and adopted by users

What do you have to know to compare different options of FANFAR system with each other?

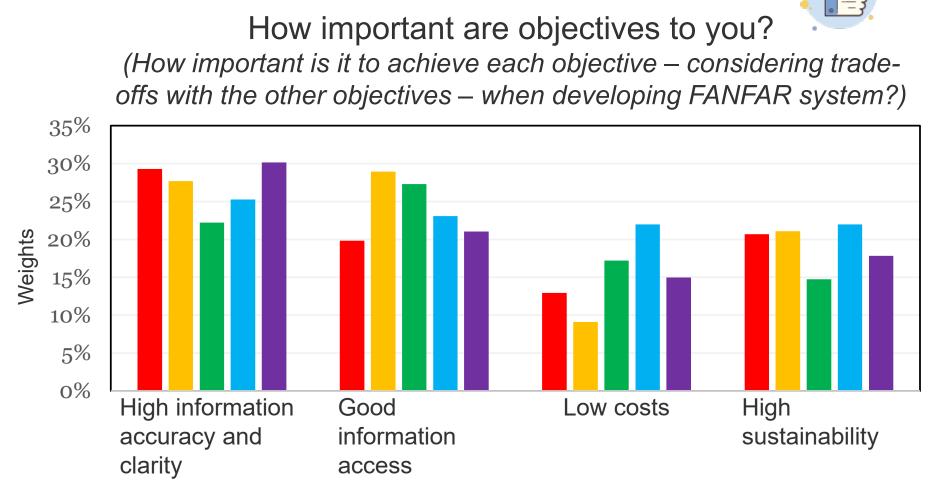
- What is really important to achieve when we develop the FANFAR system?
- Objectives developed using moderated pen & paper survey, online survey, group brainstorming, and group discussion and consensus sessions in workshop 1
- Objectives consolidated in workshop 2
- Importance of objectives (re-)elicited in workshops 1, 2, and 3

NFAR Developing objectives, WS 1 in Niamey (Niger) 2018



Hierarchy of objectives – used for the MCDA

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu



Example: weights assigned to main objectives in five groups

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

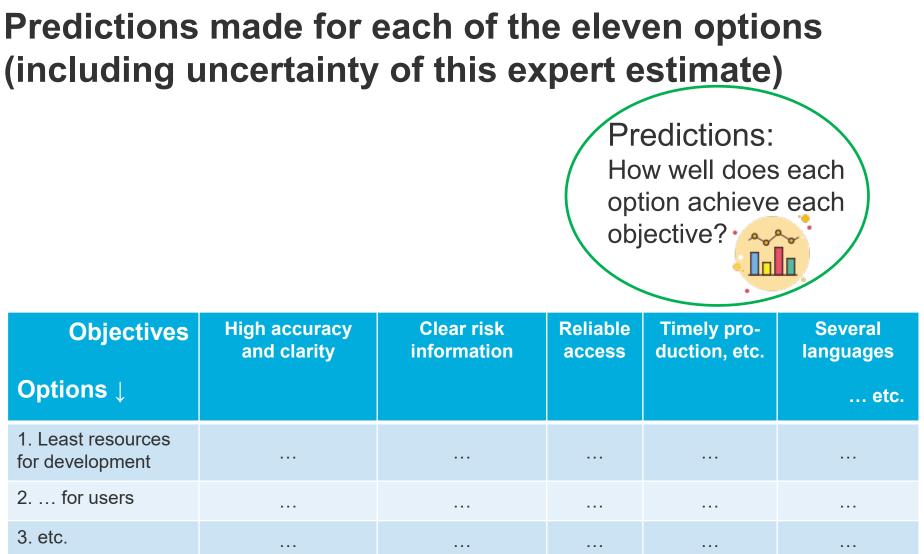
Creating options (system configurations) WS 1 Niamey 2018

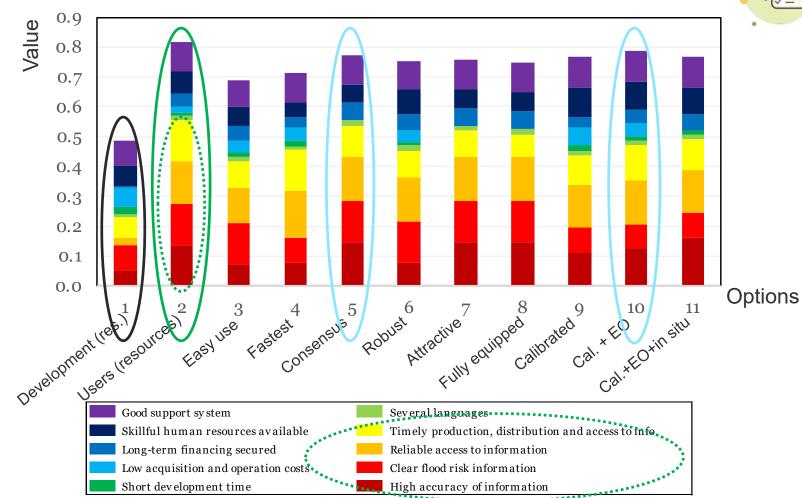
Example: creating options (system configurations) using "strategy generation table"

		-		1	1		1	
			Α	В	С	D	E	F
Option		at	recasted ariables	Observed variables	Model performance / accuracy	Data download	Distribution channels	Language
can be		r discharge	None	No performance metrics shown	No option to download	Website with	English	
implemented					data	interactive features		
fastest		discharge & ater level	Water level from satellites	Display performance metric for forecasts	Tabular data for selected station in TXT format	Website with static images	English and French	
	wat		r discharge, ter level, & ecipitation	Water level from in-situ measurements and satellites	Blank out areas where forecasting performance is too low	Tabular data for selected station in Excel format	SMS alert notifications	English, French, and Portuguese
Moot		r discharge, ater level, cipitation, & ⁄aporation	River discharge from in-situ measurements		Map of displayed variable(s), in PNG format	Email alert notifications	English, French, Portuguese, Arabic	
ontion in		r discharge, ater level, ecipitation, poration, soil ture storage	In-situ water level and river discharge, and water level from satellites		Tabular data in TXT format and map displayeo in PNG format	Website with interactive reatures, SMS and		
ideal world		ld	-				Email	

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

Eleven options elaborated for use in MCDA


- 1. Least resources for development
- 2. Least resources for users
- 3. Most easy to use
- 4. Fastest
- 5. Highest consensus
- 6. Most robust
- 7. Most attractive
- 8. Fully equipped
- 9. Calibrated models
- 10. Calibrated models + earth observation data (EO)
- 11. Calibrated models + EO + in situ data



FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

MCDA to model: which options are best? (example group English-speaking hydrologists)

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

Suitable options for all five stakeholder groups (with different preferences)

- Least resources for development
- 2. Least resources for users
- 3. Most easy to use
- 4 Fastest
- 5. Highest consensus
- 6. Most robust
- 7. Most attractive
- 8. Fully equipped
- Calibrated models 9.
- 10. Calibrated models + earth observation data (EO)
- 11. Calibrated models + EO + in situ data

FANFAR – Operational flood forecasting and alerts in West Africa: https://www.fanfar.eu

Conclusions of co-design process to find suitable system configurations (options) for an operational flood forecast and alert system in West Africa

- Different options achieve FANFAR objectives to different degrees
- Participants of the workshops (West African hydrologists and emergency managers) have different preferences regarding importance of objectives
- No problem!!
- Some FANFAR system options perform well / or even best for all groups
- Feedback from participants regarding co-design process is very positive

Discussing, testing, analyzing – creating a good flood forecast and alert system together

www.fanfar.eu

