PAUL SCHERRER INSTITUT

Vaios Moschos :: PhD student :: Paul Scherrer Institute (Switzerland)

Characterization of organic aerosol across the Arctic land surface

Imad El Haddad¹, <u>Vaios Moschos</u>¹, Julia Schmale^{1,2}, Urs Baltensperger¹, André S.H. Prévôt¹, and the iCUPE collaboration

European Geosciences Union, General Assembly 2020 (Display), May 2020

¹Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen-PSI, Switzerland (**vaios.moschos@psi.ch**) ²EPFL Valais Wallis, Extreme Environments Research Laboratory, Switzerland

Ongoing (emission) changes in the Arctic

The Arctic is melting – but it's also on fire

gas flaring (VOCs?) for oil/gas extraction

expanding vegetation, increasing wildfires

- 1. AMAP (2006) 2. Can declines in Arctic sea ice impact the weather over Europe? (viewed 12/12/19) petrieruth.wordpress.com
- 3. Expansion du tourisme de croisière dans l'Arctique canadien [...] (viewed 12/12/19) corpus.ulaval.ca
- 4. Gas flaring and household stoves speed Arctic thaw (viewed 12/12/19) www.iiasa.ac.at
- 5. Why the Arctic is smouldering (viewed 12/12/19) www.bbc.com
- 6. The World's Largest Forest Has Been on Fire for Months (viewed 12/12/19) www.bloomberg.com

Climate projections & (aerosol) Observations

Scarce (aerosol) observational data in climate-sensitive Arctic

1. KNMI Climate Change Atlas (accessed 12/12/19) climexp.knmi.nl

2. Wobus (2016) Earth's Future 3. RCP Database, version 2.0 (generated 07/11/19) 4. Kulmala (2018) Nature

Organic-containing aerosols in the Arctic

- Near-surface Arctic land stations: Aerosol transport pathways in winter vs summer^[1]?
- Eurasia is the major lower atmospheric source region of transported Arctic air pollution^[2,3]
- Strong eBC seasonality with winter high (Arctic Haze) and summer low, altitude sensitivity^[4]
- Organic aerosol local production during/after polar sunrise^[5] (open ocean, photochemistry)
- Abundant^[6] Arctic OA interacts^[7] with other aerosol components (soot^[8], sulfate^[9], metals^[10])

Motivation

Organic aerosols (OA) both absorb and scatter light depending on the sources (anthropogenic/ biogenic) & long-range transportation/atmos. processing^[1] and can alter the cloud properties.

Organic species are abundant (also in the Arctic) and can modulate, augment or offset the radiative forcing from other aerosol components^[2].

Multiple directions of future OA-climate interactions possible at different Arctic regions^[3].

Models have trouble capturing the seasonality of the observed aerosol mass, under(over)prediction for winter (summer) months, poor representation of SOA & constraint of OA sources.

Short-term online AMS-PMF at Villum (NE Greenland)

- 1. Moschos (2018) ES&T Lett.
- 3. Scott (2018) Nat. Geosci.
- 5. Shaw (2010) GRL

FTIR organic functional groups & PMF factors at Barrow, Alaska

AMS: Aerosol Mass Spectrometry; PMF: Positive Matrix Factorization; FTIR: Fourier-transform infrared spectroscopy GC: Gas Chromatography

- 2. Schmale (2018) Earth's Future
- 4. Nielsen (2019) ACP
- 6. Fu (2013) Biogeosciences

Objectives of circum-Arctic offline campaign

- 1. Comprehensive observation of understudied Arctic OA, for **accurate representation in climate models** & realistic assessment of the effectiveness of potential climate mitigation (e.g., blend of emission sources to be targeted) or adaptation actions.
- 2. Temporal & inter-annual evolution of Arctic OA composition as documentation of ongoing changes (anthropogenic- and climate change-induced), providing a reference point for future comparisons.
- 3. Identification of **spatial variability** in OA composition and source emission strengths across the Arctic land surface.
- 4. Close huge gaps of aerosol (a) observational capacity during the **dark and cold winter** (polar night) and (b) spatial coverage in the vast **Russian Arctic**.
- 5. Provide link between quantitative AMS-PMF & **molecular fingerprinting**, for a deepened understanding of the atmospheric processing of Arctic organic species.

Spatial coverage of collected samples

Collaborative network for filter (station) collection including six Arctic Council nations, led by PSI Both human-influenced & remote environments represented

Extension of offline HR-AMS technique coverage to the most climate change sensitive region

SNF scientific exchanges visit of Prof. Olga Popovicheva (Lomonosov Moscow State University) for Russian filters

[1] Adapted from:

Own aerosol sampling in Pallas (Matorova)

arcticportal.org/images/maps/small/1.8.jpg

Temporal coverage & Data availability

More than 10yrs of filter-based cumulative data

Station	Country	Coordinates/Altitude	Polar night	Midnight sun	Type of samples	Available data sets
Barrow	USA	71.4 N 156.8 W, 8 masl	19.11 to 23.01	11.05 to 01.08	HiVol, QF, TSP	OC/EC, major ions, 14C OC, LMW organic acids & (selected) organic speciation by GC-MS
Alert	Canada	82.3 N 62.2 W, 210 masl	14.10 to 28.02	07.04 to 04.09	HiVol, QF, TSP	OC/EC, major ions, 14C/13C (Stockholm)
Villum	Denmark	81.4 N 16.4 W, 0 masl	16.10 to 25.02	~09.04 to 02.09	HiVol, QF, PM10	OC/EC, major ions (TSP), Aethalometer
Zeppelin	Norway	78.9 N 11.9 E, 475 masl	26.10 to 15.02	20.04 to 20.08	HiVol, QF, PM10	OC/EC, 14C OC (Bern), ice nuclei (Basel), cellulose (Vienna), org tracers, sugars, AE33
Gruvebadet	Norway	78.9 N 11.5 E, 10 masl	26.10 to 15.02	20.04 to 20.08	LowVol, QF, PM10	OC/EC, ACSM(?)
Pallas	Finland	68.0 N 24.1 E, 565 masl	10.12 to 02.01	27.05 to 17.07	HiVol, QF, PM10	OC/EC (semi-continuously), major ions (teflon/PM2.5), trace elements (teflon), PAHs (teflon), acidic gases
Baranova	Russia	79.2 N 101.5 E, 30 masl	22.10 to 22.02	22.04 to 22.08	n.a., QF, n.a.	OC/EC, elements (XRF), AE eBC, concentration-weighted trajectories
Tiksi	Russia	71.4 N 128.5 E, 1 masl	19.11 to 24.01	11.05 to 03.08	LowVol, QF, TSP	OC/EC, major ions (CE & IC), AE eBC, trace elements (XRF)

External measurements

First results on samples from 7 sites; → TOC analyser (WSOC) → HPLC-PAD (polyols & sugars)

WSOC:OC 62 ± 21% (blank-subtracted) Levo in winter, biogenics in summer (PAL)

Remaining sample analyses ongoing, also with HPLC-MS (organic acids) & IC (inorganic anions/cations) (for data not available already by Arctic collaborators)

	erythritol	xylitol	arabitol	sorbitol	mannitol	trehalose	levoglucosan	mannosan	galactosan	Rhamnose	glucose
Sample ID (YYYY/MM/DD)	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]	[ng/m^3]
BAR_BR16QIFieldBlank	-	-	-	-	-	-	-	-	-	-	-
ZEP_2017101624							0.23				
ZEP_20180502											
ALT_20150826			0.15								
VRS_20181224							2.13	0.37			
PAL_20190204 (winter)	6.82						29.06	3.35			3.02
PAL_20190624 (summer)	216.55		24.41		17.77	11.39					30.34
TIK_20160913	7.41		3.31		4.17		12.33	3.36	0.97		2.93
BAR_20160910	5.79						10.79	1.24			
BRW_20170621			1.39		1.18						2.65

empty cells: below LOD

Offline AMS (organic) aerosol mass spectra

UMR (Squirrel) & HR (Pika) preliminary analysis

Feasibility check using ~50 samples (sample vs blank signal, variability in fragment ion composition among different sites/seasons)

Average UMR mass spectrum of the extracted aerosol fragments (all samples+water blanks)

with Long-ToF-AMS (e⁻ impact, resolution ~7k avg)

Relative intensity of fitted UM-HR organic fragment groups (all samples+water blanks)

UM(R): Unit Mass (Resolution); HR: High Resolution 10

Main fragment ion correlations

 fCO_2 (m/z=44) of 0.26 ± 0.08, more oxidized than continental OA fC_2H_3O (@m/z=43) in the low range of previous observations

Individual (averaged) samples CO^+ vs CO_2^+ assumed linear $1:1^{[1]}$ if measuring in N₂/O₂ (N₂ signal dominates m/z=28)

 $CO^+:CO_2^+ \sim 0.40 \pm 0.14$, No trend (yet) with season/station; lower limit for the *ambient* aerosol (only WS-OA fraction measured by the offline AMS technique)

Literature ratio ~ $0.59 \pm 0.10^{[2]}$, season- (or T-) dependent

x5-10 lower levoglucosan fragment signal than at lower latitudes Expected due to degradation upon transportation to remote sites Exception: Pallas winter (next to European Arctic Circle)

Fragment ion correlations & HR fitting

Van Krevelen diagram for Arctic filters

Significant spatial & temporal (bulk) variability despite using (bi-)weekly samples More oxidized samples at the most remote sites (ALT, ZEP, BRW) during fall/winter

Fitted data: Slope = -0.55 & Intercept = 1.73 (r = 0.96), consistent with OOA evolution^[1,2] (correlation of O:C with fCO_2)

Hu (2013) ACP
Ng (2011a) ACP
Daellenbach (2017) ACP

Variability in OA fragment composition

Spatial variability in the OA fragment composition (functional groups)^[1]

Pollution transport from mainland Russia, versus oxygenated fragment ions during transition to polar night

Summary & Ongoing work

Spatio-temporal dependence in OA fragment composition by offline L-ToF-AMS

Largely expected fragment ion correlations, enabling the application of AMS-PMF

No implications related to the low mass loadings in filter analyses performed so far

Finalization of supporting external measurements (WSOC/OC, ions, sugars, org. acids)

Offline data treatment & PMF analysis on full data set obtained from L-ToF-AMS

Long-term back-trajectory analysis on individual PMF-based OA source components

Molecular characterization of Arctic filter samples for AMS-PMF interpretation/validation

Wir schaffen Wissen – heute für morgen

Acknowledgements

This project was supported with funding from:

- The European Union's Horizon 2020 (H2020) research and innovation programme, under grant agreement No 689443 via project iCUPE (Integrative & Comprehensive Understanding on Polar Environments)
- The Swiss National Science Foundation (SNSF, grant no. 187566, "Source Apportionment of Russian Arctic Aerosol, SARAA")

VM acknowledges the A.G.Leventis Foundation for a doctoral student Educational Grant

