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Motivation
• In the last decade, Western Canada
Sedimentary Basin (WCSB) experienced a large
number of earthquakes induced by hydraulic
fracturing (HF)

•The Montney Basin has hosted the largest HF-
induced earthquakes in Canada, including a ML
4.5 on 11/30/2018 near Dawson Creek and a Mw
4.6 on 08/17/2015 near Fort St. John, as well as
several M3+ earthquakes close to Dawson
Creek.

Objectives
• Build a detailed earthquake catalog using data
of stations from Ruhr University Bochum (RUB),
McGill University, and Natural Resources
Canada (NRCan).

• Investigate the spatial and temporal correlation
between earthquake occurrence and HF
injection activity.
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Methods
Catalog building
•Using continuous waveform data from 15
broadband stations between July 2017 and April
2019, we detect and locate 5757 events (Figure
1a), applying an automated STA/LTA trigger with
manually corrected picks, a 1D layered velocity
model, as well as NonLinLoc, and SeisComP3.
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Methods
Clustering and fluid injection
coupling
•Daily earthquakes and seismic
moment shows temporal event
groups (Figure 2).

•Cross-correlation based similarity
analysis applied to create event
families (Figure 3; below) and
double-difference relocations
(Figure 4,5; below).

•Gray shading: periods of
injection, with total fluid volume
injected in wells within 5 km of an
event family shown by the cyan
line (Figure 2).

08/2017 12/2017 04/2018 08/2018 12/2018 02/2019

1 2 3 4 7 8 14 18 229-13 15-17 19-215,6
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Waveform-similarity based clustering for the time window of March 27th, 2019 to April 13th, 2019. (a) Network
similarity matrix, where each pixel indicates CCC for intersecting events (event pairs) indicated on the axes.
Colorbar below indicates the CCC. (b) Dendrogram imaging the hierarchical clustering among the events shown in
similarity matrix in (a). A threshold CCC > 0.6, or dissimilarity (1 - CCC) < 0.4 (indicated by the grey line) defines
earthquake families. Two families are defined in (b) (red and magenta branches), and a number of unassociated
events are shown with blue branches. (c) Initial catalog locations of events within the time window, where color
coding matches (b) Diamonds indicate the well head location of the active wells in the same period.

Relative relocations of the two event families shown in Figure 3 (red and magenta families, (a) and (b)) in the
22nd time window. The colorbar shows the temporal migration of events (circles) and HF stages (crosses along
horizontal well trajectories) in hours following the first HF stage. Relocations show strong lineations trending
ENE at low angles to SH.
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Results
Earthquake catalog
• 5757 detections from 07/2017 - 04/2019
•Catalog completeness of Mc 1.3 and b = 0.92, magnitudes
ranging between -0.6 and 4.5

Clustering
• 22 temporal event groups
• 39 event families within the 22 temporal groups
• Earthquakes highly spatially/temporally correlate with HF
operations (Figure 6; below)

Relocations
• 4191 earthquakes (Figure 7; below) with relative horizontal/
vertical location error of 35 m ± 88 m / 96 m ± 556 m.

• Seismicity distribution implies a lineation subparallel (~ 30°)
and perpendicular to SH, consistent with optimally oriented
faults, while hypocenters cluster around and above injection
depth (Figure 8; below)

Relative relocations of the event family in time window 21, defined with similarity > 0.7. Colorbar shows temporal migration of events (circles) and HF stages (crosses along horizontal well
trajectories) in hours following the first HF stage, and illustrates temporal migration along geological structures suggested by lineations in relocated epicenters. Each symbol group indicates a
subfamily with an even higher similarity (≥ 0.82) than the family threshold. In addition to the temporal migration, relocations show the same strong NE-SW lineation as in Figure 4.

Figure 5
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Figure 6

Detailed view of the temporal correlation between seismicity and well stimulation during the time period indicated by the gray shaded area outlined in red in
Figure 2. Temporal evolution of injection at individual wells (color coded histogram) and seismicity corresponding to 202 events. A fraction of 81% (163/202) of
the earthquakes occur during an ongoing well stimulation. Colored bars show the injected fluid volume per stimulation phase for each horizontal well, and the
grey line shows the relative fraction of cumulative injected volume.



8

55.95˚

56.1˚

-120.8˚ -120.6˚ -120.4˚

-120.4˚ -120.3˚-120.5˚

-120.2˚

MG01

MG03

MG04

MG05

MONT1

MONT3

0 10SH

km

55.9˚

55.95˚

0 5

km

←←

Days from 1 July 2017
0 50 100 150 200 250 300 350 400 450 500 550 600 650

MG03
MG05

Figure 7

Full scale map of 4191 double-difference event relocations.
Colorcode, network, and HF wells are consistent with Figure 1.
Inset map highlights the details of lineations in seismicity
revealed by the clustered relocation, which includes ENE, and
NW trending lineations. The ENE lineations are narrow,
suggesting near-vertical dipping faults, where more diffuse NW
lineations suggest fault structures with shallower dip angles
(relative to vertical).
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Figure 8

Example of depth distribution with respect to well location. Histogram of the absolute depth distribution of all relocated events, with horizontal bars indicating the
well operation depth and the sediment/crystalline basement boundary. Colored lines show the percentage cumulative seismic moment released in 250 m layers
for the relocations in this study (grey) and the relocations from Peña-Castro and Roth et al. [2020] (yellow). The difference in hypocentral depths for the
November 2018 ML 4.5 earthquake (corresponding to the jump in cumulative moment at 4.5 km depth) results from a larger number of events in the relocation
cluster in the study of Peña-Castro and Roth et al. [2020][7].
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Discussion
Possible causes of clustering
•Multiple wells operating in the same time period separated by distances > 5 km (Figure 3)
• Temporal event migration along the dominant direction of horizontal wells (Figure 5)
•Multiple parallel fault structures close to one individual well generate earthquakes (Figure 4)

Possible causes for two dominant observed seismicity lineations
• In the WCSB, two dominant focal mechanisms are observed (Figure 1b), i.e. thrust faulting and strike-slip faulting
• Ambient stress field suggests thrust faulting (SH > Sh > Sv)[8]
• Potentially preexisting fault structures from horst and graben systems[9] or the thrust-fault belt in the Rocky
Mountains foreland[10]

• Localized stress changes (SH > Sv > Sh)
• Sh and Sv may be similar in magnitude

Conclusion
• Short temporal/spatial distance to HF activity suggests localized increase in pore pressure is the earthquake
generating mechanism

• Lineations perpendicular and at low-angles (~ 30°) to SH are consistent with thrust and strike-slip deformation,
respectively, on optimally oriented faults.

• While strike-slip deformation occurs above HF injection activity in the sedimentary units, the larger thrust-faulting
events may be associated with basement faults formed by orogenic tectonics.
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