Soil organic carbon mapping from remote sensing: The effect of crop residues

Klara Dvorakova ^{1,*}, Pu Shi ¹, Quentin Limbourg ², and Bas van Wesemael ¹

 ¹ Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
² Walloon Agricultural Research Centre (CRA-W), Farming systems, territories and information technology unit, 5030 Gembloux, Belgium

Soil organic carbon (SOC) prediction from remote sensing is hampered by soil surface conditions

- Strong demand for mapping and monitoring SOC because :
 - SOC has a direct control on soil fertility, soil structure stabilization, water holding and cation exchange capacity
 - Soils have been losing SOC since the onset of agriculture → soil functions of many croplands are threatened
- Factors mainly affecting the SOC prediction models performance are
 - Vegetation
 - Humidity

 - Roughness

Aims of the study

- 1. Test the effects of crop residue (quantified by a hyperspectral index from an airborne image) on the performance of SOC prediction models
- 2. Establish whether a multispectral index calculated from Sentinel-2 imagery can be used as a proxy for crop residue quantification

Airborne and spaceborne remote sensors characteristics

	Satellite multispectral	Airborne hyperspectral
	esa	
	Sentinel 2	ΑΡΕΧ
Altitude (km)	786	3.6
Sensor type	multispectral	hyperspectral
Spectral range (nm)	443 – 2190	413 – 2431
Spectral bands	13	285
Resolution Spatial (m) Temporal (day)	10 – 20 – 60 5	2
Spectral (nm)	15 – 180	2 – 13
Noisy bands (nm)	_	413 – 440, 1310 – 1555, 1750 – 2000
Signal to noise (SNR) VNIR SWIR	89:1 to 168:1 50:1 to 100:1	50:1 to 700:1 40:1 to 600:1

How to estimate crop residue cover with remote sensing products?

We tried	Sentinel 2	ΑΡΕΧ
	Normalized Burn Ratio (NBR2)	Cellulose Absorption Index (CAI)
	$NBR2 = \frac{R_{SWIR1} - R_{SWIR2}}{R_{SWIR1} + R_{SWIR2}}$	$CAI = 0.5 (R_{2.0} + R_{2.2}) - R_{2.1}$
		R _{2.0} : 2026 nm
	R _{SWIR1} : 1610 nm (B11)	R _{2.1} : 2100 nm
	R _{SWIR2} : 2190 nm (B12)	R _{2.2} : 2214 nm

How to estimate crop residue cover with remote sensing products?

Study area in central Belgium

- Temperate oceanic climate (mean annual precipitation 790 mm)
- Loam belt region with well drained soils

Materials

- Sentinel 2 multispectral image
- APEX hyperspectral image
- 104 surface soil samples with measured SOC (yellow points)
- 276 surface soil samples covering three field trials (obtained from the Walloon Agricultural Research Center (CRA-W) database; red stars)

Methods

• Partial least squares regression (PLSR)

Aims of the study

- 1. Test the effects of crop residue (quantified by a hyperspectral index from an airborne image) on the performance of SOC prediction models
- 2. Establish whether a multispectral index calculated from the Sentinel-2 imagery can be used as a proxy for crop residue quantification

SOC prediction model improves if we calibrate on samples with lower CAI (i.e. lower residue cover)

- CAI calculated on an airborne hyperspectral image from 2 September 2019
- High CAI = high crop residue cover
- Low CAI = low crop residue cover
- The best SOC prediction model is found when samples with CAI < 0.75 are used to calibrate the model (orange vertical line)

Areas with higher CAI have a higher SOC predicted

Comparison of the predicted SOC obtained from PLSR model and the measured SOC values in the three fields: SOC is overestimated for field with high CAI (i.e. high residue cover)

Aims of the study

- 1. Test the effects of crop residue (quantified by a hyperspectral index from an airborne image) on the performance of SOC prediction models
- 2. Establish whether a multispectral index calculated from the Sentinel-2 imagery can be used as a proxy for crop residue quantification

During **dry conditions** at the acquisition dates, CAI and NBR2 show a linear relationship

- The shaded blue areas represent the fields which have been ploughed between the acquisition dates of the two images : 24 August (Sentinel 2) vs. 2 September (APEX)
- The blue lines are the linear regression models

However, when soils are wet (October 2019), the relationship between crop residue cover and NBR2 is poor

- The disturbing effects of crop residues influence the SOC prediction accuracy.
 - SOC overestimation for fields with extensive residue cover.
 - For dry soils in seedbed condition, the pure pixel selection based on CAI thresholds improves the SOC prediction accuracy.
 - A CAI threshold of 0.75 allowed for the best SOC prediction model.
- When soils are dry and in seedbed condition, CAI and NBR2 indexes based on both hyperspectral airborne and multispectral satellite sensors show a linear relationship. By extrapolation, a linear relationship exists between crop residue cover and both CAI and NBR2.
- The linear relationship between NBR2 and crop residue cover does not hold when soils are wet.