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Introduction Methodology Results Next steps

Using formaldehyde as a proxy of isoprene emissions

Emissions

VOC
Volatile
Organic 

Compounds
HCHO

FormaldehydeOxidation

Remote sensed
OMI-HCHO

On ∼100-km scale, HCHO is mainly sensitive to isoprene emissions
(Marais et al., 2012; Stavrakou et al., 2018)

Among biogenic volatile organic compound (BVOCs) emitted by vegetation,
isoprene is the most abundant (Guenther et al., 2012)
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Isoprene emissions and water stress
Why do we care about this relationship?
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Isoprene emissions affect levels of ozone, methane and particulate matter
(Pacifico et al., 2009). Climate change may alter isoprene emissions by modifying

the occurrence and intensity of severe stresses that influence plant functioning
(Niinemets, 2010).
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Isoprene emissions and response to abiotic factors
Radiation, temperature and water avaialbility

Radiation and temperature dependence

Zimmer et al. (2000)

Well e
stablished 

relationship

Peñuelas and Staudt (2010)

in response to drought 
No. papers reporting BVOC emission increase, decrease or no-change 

Under water stress, 
emissions decrease or increase?

Niinemets (2010)

Water stress dependence
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Selected observational global datasets

Variable and dataset Period Resolution Reference

OMI-HCHO (vQA4ECV, L3) 2005–2016 0.25◦ De Smedt et al. (2018)

CRU Temperature (v4.03) 1901–2018
0.50◦ Univ. East Anglia CRU (2020)

CRU Precipitation (v4.03) 1901–2018

Standardised Precipitation-Evapotranspiration
1901–2018 0.50◦ Vicente-Serrano et al., 2010

Index (SPEI, v2.6)

GLEAM Root-Zone Soil Moisture (v3.3b) 1978–2018 0.25◦ Martens et al. (2017)

Copernicus Leaf Area Index (LAI) 2005–2017 0.50◦ Verger et al. (2015)

MODIS C6 Aerosol Optical Depth (AOD)
2002–2017 0.05◦ Levy et al. (2013)

(L3, Terra and Aqua)

FLUXCOM Latent Heat 2001–2015 0.50◦ Jung et al. (2019)

All data re-mapped to a 2.5◦ horizontal resolution

Period for analysis: 2005–2016 → Availability of OMI-HCHO observations

Color legend: Aquiring Discarded
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Linear mixed-effects (LME) model
How to deal with non-independence in the data?

Linear mixed-effects models are a trade-off 
between these two alternatives that account for both 
fixed (variation explained by explanatory variables)

and random (not explained by explanatory var.) effects

By aggregating data at the pixel level, 
the model is less noisy but some information is lost
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e

Predictor

By applying a simple linear regression at each pixel, 
the model is noisy and does not use all information

ALTERNATIVE 1 ALTERNATIVE 2

Time series in each pixelGlobal dataset

Both spatial and temporal levels of dependence in the dataset
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Linear mixed-effects model
Random intercept model

YHCHO = fixed part︸ ︷︷ ︸
α + β1X1 + · · · + βqXq

+ random part︸ ︷︷ ︸
Site-level variability

+ ε︸︷︷︸
Residuals

In the fixed-effect part, the contribution of the explanatory variables and their

interactions is accounted and described using linear regression models.

The random intercept model

assumes that the variation around

the intercept is normally

distributed with a certain variance
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Linear annual trend in formaldehyde
OMI-HCHO version QA4ECV, Level 3 (period: 2005–2016)

By applying a LME model, HCHO does not show an overall trend at the global scale,

while robust trends emerge at the regional scale
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LME model and temporal contribution analysis
Regional scale: Australia

Accounting for only climatic drivers,
the LME model (blue line) does not
reproduce the observed regional trend
in HCHO (black line)
⇒ Need to add other explanatory
variables!

When keeping constant the
contribution over years of one
explanatory variable at-a-time (red
line), SPEI and root-zone soil moisture
show an important contribution
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Conclusions and perspectives
Formaldehyde column concentrations show no overall trend at the global scale, but
robust trends at the regional scale

Including only climatic drivers, the linear mixed-effects model explains more than
50% of the observed variance of formaldehyde. However, to correctly reproduce
the observed trend, some information is still missing (as observed for Australia)

Over Australia, the Standardised Precipitation-Evapotranspiration Index (SPEI)
and the root-zone soil moisture show important temporal contributions

Next steps
Include as explanatory variables:

Leaf Area Index (LAI) to account for trends in biomass;

Burned fraction to account for trends in wildfires, which are an important source of
formaldehyde;

Aerosol Optical Depth to account for anthropogenic sources of formaldehyde.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No. 791413
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