EGU2020-8274

Cronfa Datblygu Rhanbarthol Ewrop European Regional Development Fund

Constraining subglacial geology using ambient noise Rayleigh wave ellipticity

G. A. Jones^{1,2}, B. Kulessa^{1,3}, A. M. G. Ferreira², M. Schimmel⁴, A. Berbellini⁵ & A. Morelli⁵

- 1. Swansea University, UK
- 2. University College London, UK
- 3. University of Tasmania, Australia
- 4. Instiuto de Ciencias de la Tierra Jaume Almera Barcelona, Spain
- 5. Istituto Nazionale di Geofisica e Vulcanologia Bologna, Italy

Geological controls on ice flow

- Basal slip is a major control on ice flow and a major unknown in ice sheet models
- Hypothesised that sedimentary layers lubricate the base of the ice sheet facilitating ice flow
- Radar surveys provide limited information about basal properties and geology
- Focussed field campaigns are conducted during the summer
- Passive seismic methods allow for deep probing of the Earth's crust and once deployed provide year round recording

Goal: To quantify the relationship between the ice flow and subsurface geology

https://svs.gsfc.nasa.gov/3962

Greenland seismic network

- 26 permanent seismic stations deployed since 1970s
- Network of permanent seismic stations known as the Greenland Ice Sheet Monitoring Network – GLISN
- Over 100 temporary stations deployed
 - 47 deployed for over 12 months

Seismic ambient noise

- Background noise of the Earth varies spatially and temporally
- Short period noise typically dominated by human activities
- Primary microseisms are generated by wave-coastline interaction with a peak at ~14s
- Secondary microseisms are generated by non-linear interaction of ocean waves with a peak at ~7s

Rayleigh wave ellipticity

- Ellipticity is the ratio of horizontal to vertical displacement of a Rayleigh wave
- Ellipticity measurements shown to be sensitive to earth structure
- Produces 1D depth profiles of $v_{\rm p}\,v_{\rm s}$ and density
- Method applicable to both earthquake and ambient noise data
- Resolution is frequency dependent

 ambient noise essential in
 constraining shallow crust

Fig. 6: Berbellini et al., 2019, *GJI* 1817-1830, doi:10.1093/gji/ggy512

Rayleigh wave data extraction

- Ambient noise consists of multiple seismic phases
- Signals are detected based on the characteristic particle motion of Rayleigh waves

Data extraction workflow

On-ice station inversions

- Ellipticity measurements QC to remove values with errors > 0.2
- Invert for $v_{\rm s}$ with $v_{\rm p}$ and density scaled empirically
- Ice depth fixed based on BedMachine v3 bed topography (Morlighem M. et al., GRL 2017)
- Ice $v_{\rm s}$ = 1.4 2.2km/s with fixed $v_{\rm p}$ = 3.96 km/s and ρ = 0.915 kg/m³
- Single sub ice layer:
 - Depth 0.0 3.0km
 - $v_s 1.2 3.8$ km/s
- 2012 data inverted

On-ice station inversion results

 Inversion results are a better match to data than litho1.0 model

KIII/S)	(km/s)	(kg/m ³)
3.96	2.06	0.915
4.51	2.67	2.46
6.3	3.65	2.8
	km/s) 3.96 4.51 6.3	km/s)(km/s)3.962.064.512.676.33.65

Inversion results

- 2 3km thick layer beneath the ice with v_s 2.2 3.2 km/s
- < 1km thick layer off-ice with $v_s 2 3 + km/s$
- Possible sediment at northernmost ice station

Summary

- Extraction of Rayleigh wave ellipticity from the ambient noise using the degree of polarisation method
- On-ice stations display greater variation in ellipticity measurements compared to off-ice stations
- Ice effects the distribution of ellipticity measurements at higher frequencies
- Off-ice stations typically indicate a shallow < 1km thick layer with v_s between 2 3+km/s
- On-ice stations indicate the presence of 2 3km thick layer with variable v_s between 2.2 km/s to 3.2 km/s
- \bullet Spatial differences in on-ice $v_{\rm s}$ with northernmost station suggesting the presence of sediment