

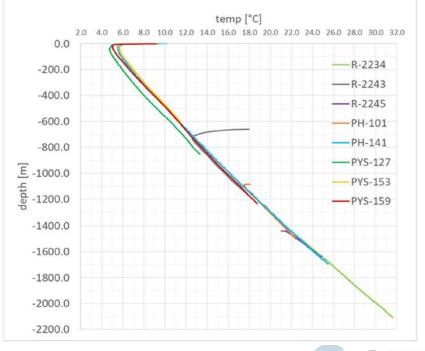
European Union European Regional Development Fund

A MINE AS A SOURCE OF GEOTHERMAL ENERGY CASE STUDY FROM PYHÄSALMI, FINLAND

K. Piipponen, J. Hietava, N. Leppäharju, A. Martinkauppi, K. Korhonen and L. Ahonen

Geological Survey of Finland kaiu.piipponen@gtk.fi

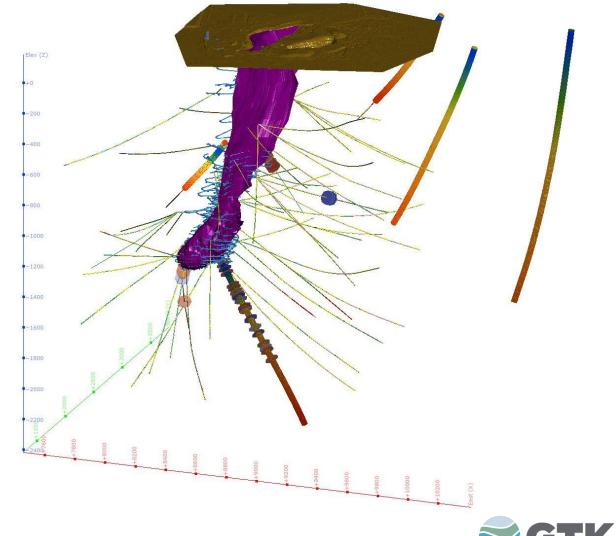
POHJOIS-POHJANMAA Council of Oulu Region


PROJECT OVERVIEW

- Pyhäsalmi mine is a 1440 m deep Cu-Zn-S mine. It is located in Fennoscandian shield, with Precambrian crystalline rock, low thermal gradient and low surface temperature
- Pyhäjärvi is a municipality of 5100 people. Pyhäsalmi mine is the largest employer of the area, but it will be decommissioned in 2021
- In the project "Energy Mine" we studied possibilities for geothermal energy utilization and heat storage in a borehole heat exchanger (BHE) field
- The mine is a unique, large underground space, so the aim is to make the best use of it without flooding the mine
- Other projects considered in the mine include neutron detecting facility (Laguna, decommissioned), pumped storage hydropower plant, fish and vegetable farming, drying food, and tourism, among others

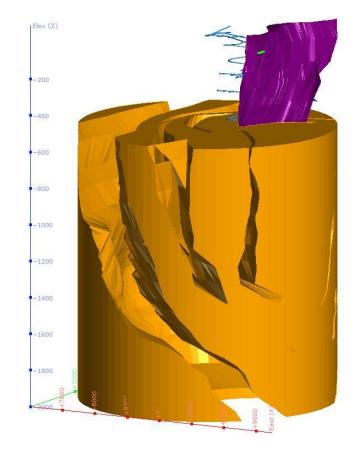
Near-surface annual average temperature is about 4 °C and geothermal gradient is 12-14 K/km. Temperature at the bottom of the mine is 20 - 25 °C

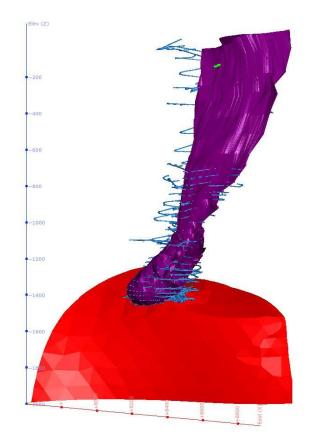
Finland



THERMOGEOLOGY: MEASUREMENTS AND 3D MODEL

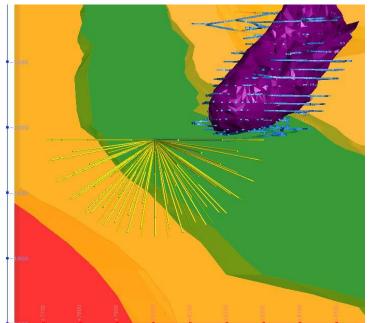
- All drilling data and geological data is provided by Pyhäsalmi Mine
 - The figure shows the ore body (purple), tunnels in the mine (blue lines) and drillholes
- We created a 3D model for the Energy Mine Project:
 - Selection of suitable Distributed Thermal Sensing (DTS) measurement locations and drillholes
 - 4 boreholes from the surface and 4 from the mine (thick lines in the figure)
 - Selection of petrophysical thermal conductivity samples . from specific drillholes
 - 57 samples from 4 drillholes (marked with disks in the figure)
 - Descriptions and modelling of structural geology .
 - Design of the location and dimensions of a BHE field

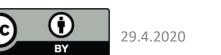



- Thermogeologically the Pyhäsalmi rocks can be broadly divided into three parts:
 - Mafic volcanic rock; intermediate thermal conductivity; thermal anisotropy
 - Felsic volcanic rock; good thermal conductivity; thermal anisotropy
 - *Porphyry granite, good thermal conductivity, thermal isotropy*

Elev (Z)	
-200	
-400	
• 600	
- 800	
-1000	
-1200	
- 1400	
- 1600	
-1800	1300
-200b	+86 0 +8400
U	Elast + +

BY




Generalized rock species		Density	Thermal conductivity	Specific heat capacity
	∑ samples	[kg/m³]	[W m ⁻¹ K ⁻¹]	[J kg ⁻¹ K ⁻¹]
Mafic volcanic	22	2975±76	2.27±0.16	682±22
Felsic volcanic	21	2708±46	3.40±0.44	681±24
Granitoid	14	2639±18	3.24±0.22	685±33
Summary	57	2794±156	2.92±0.61	682±25

GEOTHERMAL HEAT PRODUCTION

- Borehole heat exchanger optimization was done to compare 300 m deep U-tube and coaxial BHEs. We also compared different insulation levels for the coaxial tube and flow direction in the coaxial BHE
- The results show that insulated coaxial collector has the best performance. Injection through annulus is 2.5% more effective than injection through central pipe
- See details in presentation: D923 | EGU2020-8696 Geothermal energy in Pyhäsalmi mine, Finland: performance evaluation of heat collector type
- The best performing BHE was placed to the underground borehole field. Hemispherical shape allows boreholes to be drilled to different directions from a small space
- The results show that a borehole field of 136 BHEs can sustain heat extraction of 1 MW for at least 44 years
- See details in presentation: D925 | EGU2020-9104 <u>Hemispherical</u> <u>underground borehole heat exchanger field as a source of geothermal energy</u>

