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A new three-dimensional regularization 
for finite fault source inversions



the source function at a given frequency can be found by inverting the seismic 
data at that frequency

for example: consider the 0Hz 
(static displacement                       static fault dislocation) 

Inverted using the fuzzy approximation method

[Kheirdast et al, under review]
True

The SIV1-Benchmark Mai et al, 2016

(m) (m)

the spatial slip distributions



Something is not right!
The inverted spectrum is not smooth.

Inverted True

In the frequency-domain inversions: The slip is regularized in space, but not in frequency.



The frequency domain spectrum should 
be smooth

How can we avoid these saw tooth?  

Why the spectrum is not as smooth as the True SVFs

What is this peak?



We need further regularization
In the frequency domain

■ For example minimizing the first order derivative of the spectrum with 

this well-known operator: L1 is the first-order derivative



Benefits of further regularization:
Transferring knowledge from one frequency 
to another

-

dense acquisition in near fault

region (e.g.. InSAR), data is

densely acquised, forward

relation is less ill-posed , the

model parameters has less

uncertainty

Sparse data acquisition

networks do not cover densely,

however, the forward relation is

relatively reliable in lower

frequencies.

Still sparse data acquisition, the

forward relation becomes less reliable

with increasing the frequency,

because the fundamental solutions

(green functions) become more

sensitive to small perturbations of the

wave-field material.

InSAR High-rate GPS Strong-motion



How can we apply the further regularization?
By constraining the forward operator
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Forward Block: that is more or less the  

Rep. theorem.

Spatial Smoothing Block: 

already applied with 

Laplacian operator

Spectral Smoothing Block: the new development is placed here
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We need to determine     

𝛼0, …, 𝛼𝑛𝑓𝑟𝑞, 𝛼𝑠𝑝𝑒𝑐



How to determine the regularizing 
parameters 𝛼1, …, 𝛼𝑛𝑓𝑟𝑞, 𝛼𝑠𝑝𝑒𝑐?

This problem is a multi-parameter Tikhonov regularization

In this proposed method, we try to determine the probability distribution of 𝛼0, …, 𝛼𝑛𝑓𝑟𝑞, 

𝛼𝑠𝑝𝑒𝑐 using a Bayesian method by finding the PDF of the regularizing parameters:

• expected value estimator 

• maximum likelihood estimator 

From the PDF of 𝛼0, …, 𝛼𝑛𝑓𝑟𝑞, 𝛼𝑠𝑝𝑒𝑐, we can then estimate their value using an estimator, for example: 

𝑃(𝛼1)



Bayesian modelling 

𝑃(𝜶|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝜶) × 𝑃(𝜶)

𝑃(𝑑𝑎𝑡𝑎)

Just scales the fraction, nothing  important 

We can easily calculate this probability, 

having the modelling error show before



Bayesian modeling 

𝑃(𝜶|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝜶) × 𝑃(𝜶)

𝑃(𝑑𝑎𝑡𝑎)

Just scales the fraction, nothing  important 

We can easily calculate this probability, 

having the modeling error show before

How to determine 𝑃 𝑑𝑎𝑡𝑎 𝜶 ?

We have no prior information, 

thus we consider it as uniformly 

distributed over a large set of 

values



How to determine 𝑃 𝑑𝑎𝑡𝑎 𝜶 ?

Morozov Discrepancy Principle:

■ If we choose 𝛼 in a way that:

𝐆m𝛼 − d 2 > δ

All information in data would not used. We can explore more

■ If we choose 𝛼 in a way that:

𝐆m𝛼 − d 2 < δ

We would over fitted the model to the noise.

■ The best solution is: 𝐆m𝛼 − d 2 = δ



We need to characterize the error
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Error is frequency dependent

𝑑𝑜:true SIV data 

(blue)

𝑑𝑆: our reproduced data 

from discretized model 

and Green functions from 

Axitra (orange)
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How can we apply discrepancy principle?

True Solution : Has data error: 

A Good solution : 
Follows the 

same data error: 

= a priori Noise/uncertainty 

model

𝑃 𝑑𝑎𝑡𝑎 𝜶Assuming
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MCMC sampling

■ To sample from 𝑃(𝜶|𝑑𝑎𝑡𝑎) we adopt MCMC sampling, 

■ By means of this method, we explore a large parameter space (with a random walk 

strategy)

■ We move toward the most probable part of the parameter space

■ We have a larger number of samples from the most probable parameters



Synthetic Test on SIV1: 12 frequencies df:1/32Hz
Posterior distribution of regularizing parameters
After running MCMC with 500,000 sampling

Spatial regularizing 𝛼1
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Spatial regularizing 𝛼2 Spatial regularizing 𝛼3

Spatial regularizing 𝛼4 Spatial regularizing 𝛼5 Spatial regularizing 𝛼6

Spatial regularizing 𝛼7 Spatial regularizing 𝛼8 Spatial regularizing 𝛼9
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Spatial regularizing 𝛼10 Spatial regularizing 𝛼11 Spatial regularizing 𝛼12
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Spectral regularizing 𝛼𝑠𝑝𝑒𝑐

𝛼𝑠𝑝𝑒𝑐

Synthetic Test on SIV1: 12 frequencies df:1/32Hz
Posterior distribution of regularizing parameters
After running MCMC with 500,000 sampling



Results (Tested on SIV-inv1)

True model
Common FF Approach 

– 2D Regularization 

New FF Approach –

3D Regularization 



Results: |SVF| at different frequencies

True model New FF Approach –

3D Regularization 

Slip @ 0 Hz

Slip @ 0.031 Hz

(m) (m)

(m) (m)



True model
New FF Approach –

3D Regularization 

Slip @ 0.063 Hz

Slip @ 0.094 Hz

Slip @ 0.125 Hz

(m) (m)

(m) (m)

(m) (m)



True Solution
New FF Approach –

3D Regularization 

Slip @ 0.156 Hz

Slip @ 0.188 Hz

Slip @ 0.22 Hz

(m) (m)

(m) (m)

(m) (m)



True model
New FF Approach –

3D Regularization 

Slip @ 0.25 Hz

Slip @ 0.281 Hz

Slip @ 0.313 Hz

(m) (m)

(m) (m)

(m) (m)



True model
New FF Approach –

3D Regularization 

Slip @ 0.344 Hz

Slip @ 0.375 Hz

(m) (m)

(m) (m)



Conclusion

■ We proposed a new regularization approach to take more realistic source functions, 

smooth in both space and frequency domains.

■ The new operator helps us to transfer our inference from one frequency to another 

■ We applied a Bayesian method to determine regularizing parameter.


