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Background
• High-resolution (both in time and space) soil moisture is needed for a wide 

range of applications

• Currently, no satellite-derived product can satisfy these requirements

• Several (spatial) downscaling methods have been developed

• In the last decade, Machine Learning found wider use for downscaling

• Large amounts of in-situ measurements are required for training

• Low-cost sensors are an appealing solution 
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Overview
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Data
• Hydrological Open Air Laboratory – HOAL (Austria)

• 38 low-cost sensors1 measuring:
• Soil moisture

• Incoming solar radiation Vegetation proxy (~fAPAR)

• Soil texture (sand, silt, clay)

• DEM (5 topographic indices)

• ASCAT and SMAP soil moisture products

• Average from in-situ sensors (AVG_insitu)

1 Xaver et al. 2020 (doi.org/10.5194/gi-9-117-2020) Location of the study area in Petzenkirchen, Austria (a) and distribution of the low-cost sensors 

within the study area (b). Map data ©2019 Bing.
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Methods
• Downscaling using Random Forest regression

𝑆𝑆𝑀𝐻𝑅 = 𝑅𝐹(𝑆𝑆𝑀, 𝑆𝑜𝑖𝑙 𝑇𝑒𝑥𝑡𝑢𝑟𝑒, 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦, 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛)

• Model combinations

• Model evaluation: 10 fold cross-validation (Pearson R and uRMSD)

• Additional analysis: Effect of training set size on model accuracy
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Results
• Which set of input variables should be used?

 Vegetation (V) alone is not enough

Pearson R and uRMSD
between measured and 
predicted soil moisture. The 
soil moisture source used 
as predictor (AVG_insitu, 
ASCAT, SMAP) is displayed 
above each graph. The 
white dots indicate the 
median values (also 

reported below the violins)
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Results
• Which set of input variables should be used?

 Topography (T) has more predictive power than Soil texture (S)
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Results
• Which set of input variables should be used?

 A combination of S, T, and V provides the most accurate results
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Results
• Are both the temporal dynamics and the spatial patterns captured?

 Quality of temporal dynamics strongly related to input (coarse scale) soil
moisture product

Cumulative frequency of Pearson R and uRMSD between measured and predicted soil moisture (model combination SSM+S+T+V). The statistical metrics were calculated for each sensor 

location, thus representing the ability of the model to capture temporal dynamics (a), and for each time-step, accounting for the model skill to reproduce spatial patterns (b).
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Results
• Is the model accuracy consistent between crops and natural vegetation?

 Higher accuracy observed for non-agricultural locations
Violin plots of Pearson R (top) and uRMSD
(bottom) between measured and predicted soil 
moisture (model combination SSM+S+T+V) 
depending on the vegetation type. CROP indicates 
agricultural fields, while NO-CROP includes 
grassland, forest, and field edges. The boxplots 
within the violins indicate quartiles and the white 
dots depict the median values (also reported below 

the violins).
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Results
• What is the improvement compared to the input (coarse scale) soil moisture? 

Scatterplots between measured soil moisture and original coarse-scale SSM products (top) and 
between measured and downscaled soil moisture (model combination SSM+S+T+V) (bottom). 
The color indicates the number of observations

Density distributions of soil moisture obtained for in-situ measurements (blue lines), downscaled soil 
moisture from the model combination SSM+S+T+V (orange lines), and the original coarse-scale SSM 

products (green lines). 
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Results
• Example of downscaled ASCAT 

Spatial patterns of soil moisture over the study site for three days with varying moisture conditions. Each graph shows also the scatterplot between measured and predicted soil moisture for the same day. Soil 
moisture was obtained from the sub-optimal model combination ASCAT+S+T (similar patterns were found for the SMAP+S+T combination, not shown). Note that a proxy of vegetation cover “V”nwas not included 
because it was available only for the sensor locations (depicted with the cross) but not for the entire study area.
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Results
• What is the effect of training set size on downscaling accuracy?

 considerable improvements with increasing training set sizes

Pearson R and uRMSD between measured and predicted soil moisture (SSM+S+T+V) against the number of sensors used to train the models. Training sets consisted of 25%, 50%, and 75% of: (LEFT) all available sensors 

(38), (RIGHT) of contiguous observations sampled from the original training sets (ALL). For each training set size, we repeated the evaluation for 10 random permutations. The median values are reported below the violins.



EGU General Assembly 2020, Online

Sharing Geoscience Online, 4-8 May, 2020
14

Results
• What is the effect of training set size on downscaling accuracy?

 Higher accuracy if data from more sensors and short period rather than few
sensors measuring for longer

Pearson R and uRMSD between measured and predicted soil moisture (SSM+S+T+V) against the number of sensors used to train the models. Training sets consisted of 25%, 50%, and 75% of: (LEFT) all available sensors 

(38), (RIGHT) of contiguous observations sampled from the original training sets (ALL). For each training set size, we repeated the evaluation for 10 random permutations. The median values are reported below the violins.
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Conclusions & Outlook
• The accuracy of the downscaled soil moisture is strongly related to the quality of the model 

predictors

• Topography has higher predictive power than soil texture (study site has hilly landscape)

• Vegetation plays a key role in organizing soil moisture spatial patterns, and great accuracy 
improvement is obtained if included as model predictor

• If limited training data, priority should be given to increase the number of sensor locations to 
adequately cover the spatial heterogeneity, rather than expanding the duration of the 
measurements

• Improve the proposed framework by including satellite-derived vegetation indices

• Test the model developed here in regions with similar environmental conditions


