
Switch to single slide view and navigate through the presentation by clicking on green framed objects

Combined event-based tritium and air mass back-trajectory analysis of Mediterranean precipitation events

Tobias Juhlke*, Jürgen Sültenfuß, Katja Trachte, Frédéric Huneau, Emilie Garel, Sébastien Santoni, Johannes A. C. Barth, Robert van Geldern *

Conclusions

- Moisture originating from the Atlantic Ocean and Continental Europe result in predominantly low and high ³H concentrations in precipitation, respectively.
 - Air mass history altitude is good predictor of ³H concentration in precipitation. especially during the "tropopause leak"
- Extreme 3H events hint on possible recycled continental moisture as source of 3H to precipitation

For more information feel free to read the published, fulllength, open access article:

Juhlke, T. R., et al. (2020). "Tritium as a hydrological tracer in Mediterranean precipitation events." Atmospheric Chemistry and Physics 20(6): 3555-3568. https://doi.org/10.5194/acp-20-3555-2020

HYSPLIT back-trajectory modelling

HYSPLIT model generates backward tracks of air mass movement

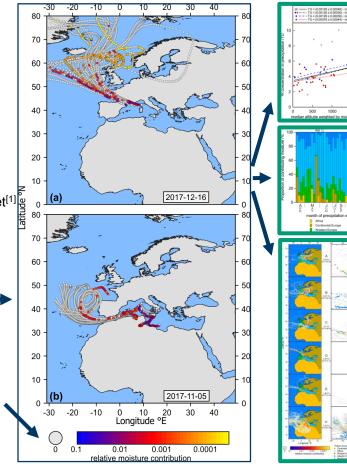
Event based precipitation sampling for ³H analysis

Input parameters and data:

- Start location
 - LAT

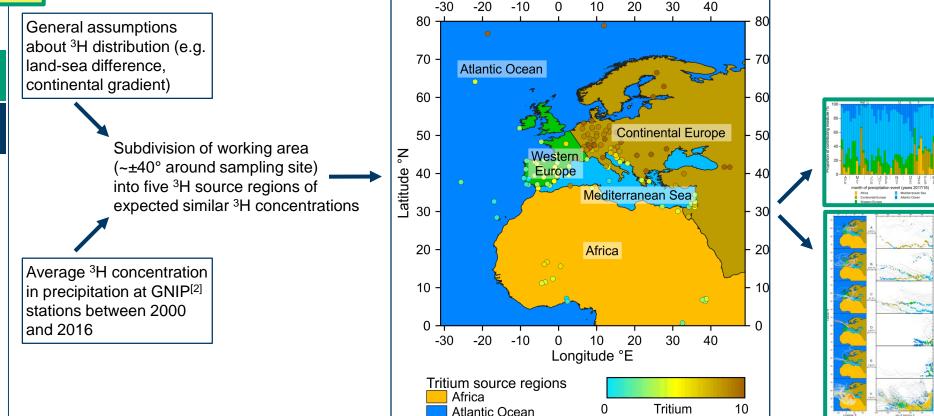
sampling site at Corte (Corsica), France

- Altitude: 12 starting altitudes from 0 to 6000 m a.g.l.
- Start time (date and hour): full hours of sampled precipitation events
- Start time (date and nour). runnours of samples process.


 3D grid of meteorological background data: ERA5 meteorological grid dataset[1] [9]

HYSPLIT output: hourly spaced points with attached information

- Position (LAT, LON, altitude)
- Meteorological parameters (e.g. specific humidity)


Calculation of origin of mositure uptake for air mass at starting location

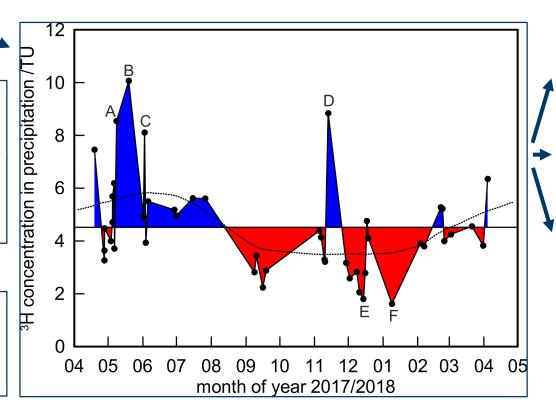
Source regions of similar ³H content

Continental Europe Mediterranean Sea Western Europe concentration /TU

Seasonality of ³H in precipitation events

Event based precipitation sampling for ³H analysis

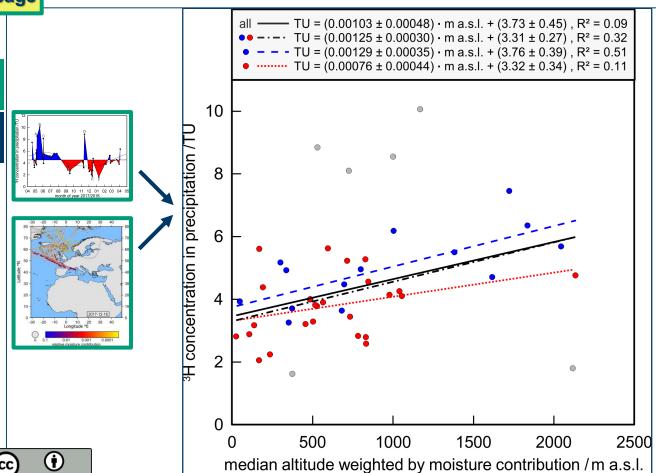
Expectation


Spring & early summer: Increased moisture exchange from stratosphere to troposphere ("tropopause leak")^[3]

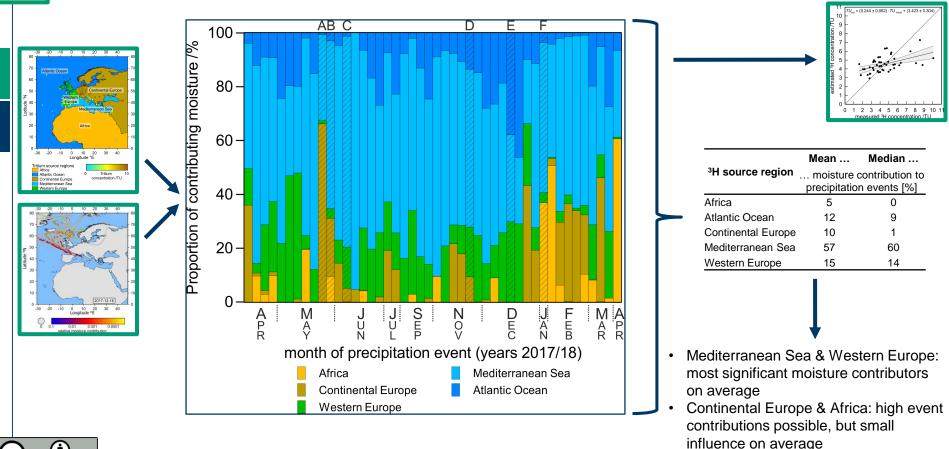
→ ³H of stratospheric origin influences ³H concentration in precipitation

Observation

Spring & early summer: Increased 3H concentration Autumn & winter: Decreased 3H concentration

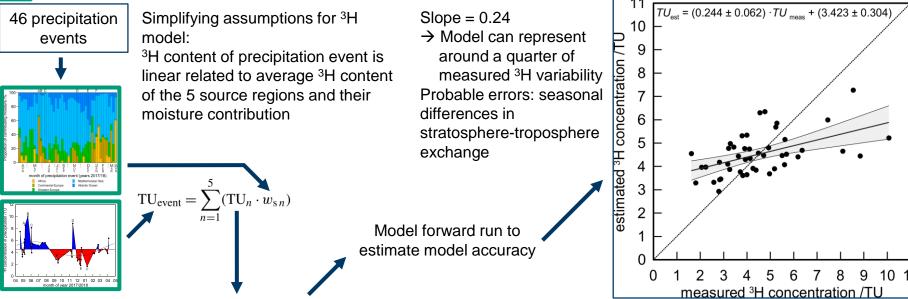


³H and the average altitude of moisture contribution

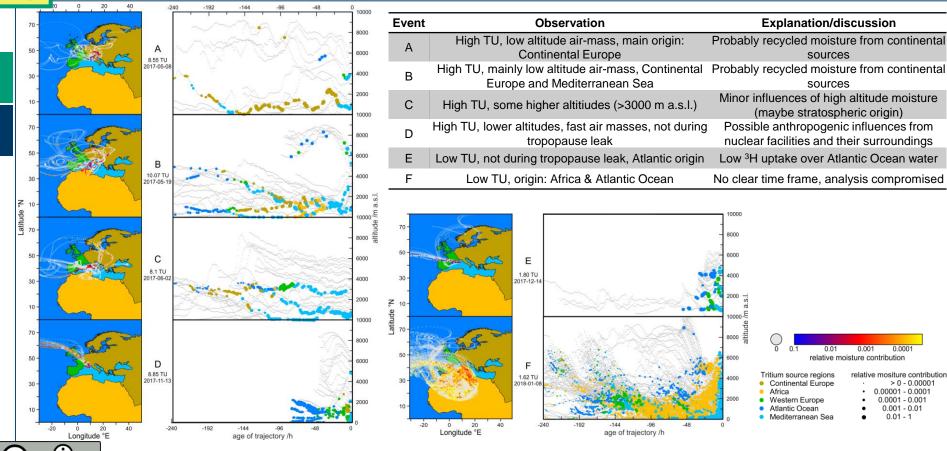

Observations

- ³H increase per altitude (slope) is similar for all sample subsets
- Quality of the regression line (R²) increases when
 - · outlier values are excluded
 - only samples from the "troposphere leak" season (here April to July, blue) are considered
- → Altitude of air mass history can be a predictor of ³H concentrations in precipitation, especially in spring and summer

Event-based regional moisture origin



Model of ³H source region concentration



	³ H source region	Estimate of ³ H concentration [TU]	Explanation/discussion
	Africa	5.5	Higher than Mediterranean Sea, but high uncertainty due to rare moisture contribution
	Atlantic Ocean	(-1.2)	Negative value indicates tendency to 0, minor 3H contribution from the open ocean matches low 3H values in ocean water
	Continental Europe	8.8	High estimate matches expected trend of increased 3H concentration over continent
	Mediterranean Sea	4.1	High value for marine environment, near to average of all measured events, because of highest moisture contribution
	Western Europe	7.3	Unexpectedly high values for marine incluenced lanmasses, maybe anthropogenic influences?

Events with extremely low and high ³H concentrations

Affiliations and references

Tobias Juhlke^a, Jürgen Sültenfuß^b, Katja Trachte^c, Frédéric Huneau^{d,e}, Emilie Garel^{d,e}, Sébastien Santoni^{d,e}, Johannes

A. C. Bartha, and Robert van Gelderna

^a Friedrich-Alexander-University Erlangen-Nuremberg, GeoZentrum Nordbayern, Department of Geography and Geosciences, Germany https://www.gzn.nat.fau.de/angewandte-geologie/hydro-environmental-geology/

b Institut für Umweltphysik, Universität Bremen, Germany https://www.ocean.uni-bremen.de/

^c Institute for Environmental Sciences, Brandenburg University of Technology (BTU), Germany
https://www.b-tu.de/en/chair-atmospheric-processes

d Université de Corse Pascal Paoli, Faculté des Sciences et Techniques, Département d'Hydrogéologie, France
 https://gerhyco.universita.corsica/
 e CNRS, UMR 6134 SPE, France

This presentation and the corresponding journal article are part of the CorsicArchive

project.

More information at:

www.corsicarchive.de

[1] Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home, 2017.

[2] IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database, available at: https://nucleus.iaea.org/wiser, 2019.

[3] Martell, E. A.: Atmospheric Aspects of Strontium-90 Fallout: Fallout evidence indicates short stratospheric holdup time for middle-latitude atomic tests, Science, 129, 1197–1206, https://doi.org/10.1126/science.129.3357.1197, 1959.

Funded by

German Research Foundation

grant no. GE 2338/1-1

