A new snapshot interferometric imaging spectrometer: a first comparison with a classical grating spectrometer

Aneline Dolet^{1,2}, Daniele Picone¹, Silvère Gousset⁴, Mauro Dalla Mura^{1,3}. Etienne Le Coarer⁴ and Didier Voisin²

¹ GIPSA-lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France ² UGA, CNRS, Institut des Géosciences de l'Environnement (IGE), Grenoble, France ³ Tokyo Tech World Research Hub Initiative (WRHI), School of Computing, Tokyo Institute of Technology, Tokyo, Japan

⁴ Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Grenoble, France

May 5, 2020

Α.	D	Ô	F.	Г	et	а	١.

Introduction

2 ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

3 Experiments

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

Conclusion

Image: Image:

.

Introduction

ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

Experimen

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

5 Conclusion

Introduction

- Atmospheric gas monitoring is of major importance for CC and air quality
- Nowadays, conventional dispersive hyperspectral imaging systems are used

Advantages

Good performances for current monitoring but better performances are always required to increase the measurement precision

Disadvantages

 Compromises in terms of price, spectral and spatial resolutions and temporal acquisition frequency

Introduction

 Presentation of a new ground-breaking device currently developed under the name Imaging Spectrometer on Chip (ImSPOC)

Advantages

Snapshot with significant spectral and spatial resolutions

Disadvantages

Challenges in term of signal and image processing

Introduction

Introduction

- This study presents the first experiments done with the ImSPOC sensor
- Sun tracking acquisitions were done in Grenoble, France with both:
 - ImSPOC sensor
 - Conventional dispersive hyperspectral imaging system (USB2000+, Ocean Optics)

• Preliminary results of comparison between both instruments measurements are highlighted

A. DOLET et al.

May 5, 2020 6/21

Introduction

ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

Experiment

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

5 Conclusion

Concept

ImSPOC concept

 An array of Fabry-Perot interferometers allows snapshot acquisitions of multiple thumbnails on the same focal plane

Concept

ImSPOC concept

ImSPOC concept

• Theoretically, the interferograms should be regularly sampled

★ E > ★ E

< □ > < 🗗 >

ImSPOC concept

 However, after fabrication of the instrument, the interferograms are actually irregularly sampled

Signal and image processing for ImSPOC

Objectives

- Calibration :
 - Optimal interferogram reconstruction
- Spectrum reconstruction : interferogram inversion
- Concentration estimation :
 - Gas detection
 - Concentration quantification

Introduction

2 ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

5 Conclusion

Sun tracking acquisitions

- Acquisitions were done on June 19, 2019
- Every ≈ 50 seconds from 1pm to 6pm
- Synchronized acquisitions from the Ocean spectrometer and Imspoc instrument

ImSPOC calibration

• The thickness of each interferometer was previously estimated to correctly reconstruct the acquired interferograms [Dolet et al., 2019, Picone et al., 2020]

Spectra reconstruction

- To reconstruct spectra, different models of the ImSPOC intrument can be taken into account [Picone et al., 2020]:
 - ► For each interferometer, the Fabry-Perot interferometry principle can be applied

- R: Reflectivity of the surface
- $\phi = 2\pi\sigma\delta_k$: Round-trip Phase Difference
- $\delta_k = 2nL_k \cos \theta$: Optical Path Difference
- θ: Inner Reflection Angle

$$U_k = \left(Re^{-j\phi}\right)U_0$$
$$I_{out} = \sum_{k=0}^{\infty} |U_k|^2$$

Spectra reconstruction

- To reconstruct spectra, different models of the ImSPOC intrument can be taken into account [Picone et al., 2020]:
 - ► For each interferometer, the Fabry-Perot interferometry principle can be applied

$$T_{k}(\phi) = \frac{I_{out}}{I_{in}} = \begin{cases} 1 + R^{2} + 2R\cos\phi & 2 \text{ Waves Model} \\ \frac{1 + R^{2N} - 2R^{N}\cos(N\phi)}{1 + R^{2} - 2R\cos\phi} & \text{N Waves Model} \\ \frac{(1 - R)^{2}}{1 - R^{2}} \left(1 + \frac{4R}{(1 - R)^{2}}\sin\left(\frac{\phi}{2}\right)\right)^{-1} & \text{Infinite Waves Model} \end{cases}$$

- The 2 Waves Model can be approximated by a cosine Fourier Transform
- In this study, a cosine Fourier Transform is apply to the interferograms to reconstruct spectra

Introduction

2 ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

Experiment

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

5 Conclusion

Preliminary results

• To reconstruct the ImSPOC spectrum, we use the **Cosine Fourier transform** and we apply the **transfer function** between both instruments, calculated from the calibration

• The ImSPOC spectrum has more fluctuations between 400 nm and 550 nm. We will then focus the study to this range.

Preliminary results

Preliminary results

- We know that, with the ImSPOC sensor, we miss the continuum as it is impossible to have an interferometer of zero thickness
 - We approximate the continuum (red curve), using a gaussian approximation, and subtract it to the dispersive spectrometer spectrum to compare the result to the ImSPOC spectrum

・ロト ・同ト ・ヨト ・ヨ

Preliminary results

Preliminary results

- We know that, with the ImSPOC sensor, we miss the continuum as it is impossible to have an interferometer of zero thickness
 - We approximate the continuum (red curve), using a gaussian approximation, and subtract it to the dispersive spectrometer spectrum to compare the result to the ImSPOC spectrum

- The spectral resolution of ImSPOC is too low to precisely detect gas
- However, ImSPOC allows to see absorption peaks that can be seen with the OCEAN spectrometer

A. DOLET et al.

Introduction

2 ImSPOC instrument

- Concept
- Signal and image processing for ImSPOC

Experimen

- Acquisitions
- Calibration
- Spectra reconstruction

Preliminary results

5 Conclusion

Conclusion

- This study shown that the ImSPOC spectrometer can be sensitive to some absorption peaks.
- However, the low spectral sampling rate of ImSPOC does not allow a precise localization of absorption peaks.
- In further study:
 - The sample rate of the ImSPOC reconstructed spectra should be improve.
 - We used for this first study the 2 Waves Model for the spectrum reconstruction. Other models (N Waves or Infinite Waves Models) will now be tested solving an inverse problem.
 - A quantitative comparison of the two acquisitions will be done.
 - Gas quantification method, as DOAS, should be tested on ImSPOC spectra to access concentration quantities
 - A DOAS method could probably also be **directly applied to the interferogram**.
 - Finally, new prototype with larger sensitivity range should allow a study on a larger wavelength range.

・ロト ・回ト ・ヨト ・ヨト

Conclusion

The end!

Thank you!

A. DOLET et al.

E▶ E つへで May 5, 2020 20/21

Bibliography

 Dolet, A., Picone, D., Mura, M. D., Voisin, D., Gousset, S., Douté, S., and Coarer, E. L. (2019).
Gas characterization based on a snapshot interferometric imaging spectrometer. In Bruzzone, L., Bovolo, F., and Benediktsson, J. A., editors, *Image and Signal Processing for Remote Sensing XXV*. SPIE.

Picone, D., Dolet, A., Gousset, S., Voisin, D., Mura, M. D., and Coarer, E. L. (2020).

Characterization of a snapshot fourier transform imaging spectrometer based on an array of fabry-perot interferometers.

In 45th International Conference on Acoustics, Speech, and Signal Processing. IEEE.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))