

D1565 EGU2020-8392

Quantum Absolute Sensors for Gravity measurements

S. Merlet, R. Piccon, S. Sakar and F. Pereira Dos Santos

LNE-SYRTE Observatoire de Paris - Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

https://syrte.obspm.fr/spip/science/iaci/

Gravimetry & Sensors

$$ec{g} \hspace{0.1in} g = ec{g} \hspace{0.1in} ext{grad} \hspace{0.1in} ec{g} \ 1 \hspace{0.1in} \mu Gal = \begin{array}{c} 10 \hspace{0.1in} nm.s^{-2} & 1 \hspace{0.1in} E = \begin{array}{c} 10^{-9} \hspace{0.1in} s^{-2} \ = 0.1 \hspace{0.1in} \mu Gal.m^{-2} \end{array}$$

Geophysical studies

Crustal deformations, mass changes, geoid, …

Tests of Fundamental physics

G, *equivalence principle*

Metrology *Redéfinition du kg, Kibble balance*

Gradiometers: Combination of accelerometers, (gyro stabilized plateform), Electrostatic, superconducting

Differential measurements $FTG: 20 - 2 E.Hz^{-1/2}$ $SG: 0.5 E.Hz^{-1/2}$ $GOCE: \sim 10 mE.Hz^{-1/2}$

Atom interferometer

Stimulated Raman transitions

Two photon transition coupling $|f\rangle$ and $|e\rangle$ $\phi(t) = \omega_{\text{eff}}t - \vec{k}_{\text{eff}}\vec{z}(t) + \varphi_{\text{eff}}(t)$

Interest of Raman transitions: Bijection internal – external state

Consequence : detection on internal state

Sampling of the positions at the 3 pulses

$\Delta \Phi = -\vec{k}_{\rm eff}\vec{g}T^2$ Scales as T^2 , benefits of cold atoms

3

Atom interferometer

Stimulated Raman transitions

Two photon transition coupling $|f\rangle$ and $|e\rangle$ $\phi(t) = \omega_{\text{eff}}t - \vec{k}_{\text{eff}}\vec{z}(t) + \varphi_{\text{eff}}(t)$

Interest of Raman transitions: Bijection internal – external state

Consequence : detection on internal state

Sampling of the positions at the 3 pulses

Cold Atom Gravimeter (CAG) sequence

CAG performances & capabilities

Observatoire de Paris

 \geq

 \geq

LNE-SYRTE

Wavefront Bias determination

Implement Ultracold Source on CAG

		Effect	Bias	u
			$\mu { m Gal}$	$\mu { m Gal}$
		Alignments	0.3	0.5
		Frequency reference	0.5	< 0.1
		RF phase shift	0.0	< 0.1
		vgg	-13.4	< 0.1
		Self gravity effect	-2.1	0.1
6		Coriolis	-5.3	0.8
		Wavefront aberrations	-5.6	1.3
		$\mathbf{LS1}$	0.0	< 0.1
		Zeeman	0.0	< 0.1
		LS2	-3.6	0.8
		Detection offset	0.0	0.5
-4		Optical power	0.0	0.5
		Cloud indice	0.4	< 0.1
Atom temperature (µK)		Cold collisions	< 0.1	< 0.1
		CPT	0.0	< 0.1
function of the atomic temperature from 50nK		Raman α LS	0.3	< 0.1
to 7µK		Finite Speed of Light	0.0	<0.1
R. Karcher et al., New J. Phys. 20 (2018) 113041 $\Delta g =$	$(-5.3 \pm 1.3) \mu Gal$	TOTAL	-28.5	2.0
	EGU 2020			9

Observatoire de Paris

LNE-SYRTE

Quantum dual gravi-gradio meter

- Simultaneous interferometers on two cold atom clouds with common Raman lasers
- Differential measurement allows for extracting the acceleration difference (and thus the Earth gravity gradient)
 - **Suppression of common mode noise**, and in particular of the vibration noise
 - Adapted for onboard measurements
- g and Δg : resolve ambiguities in determination of mass and position

How to increase the sensitivity ?

$$\Delta \Phi = \vec{k}_{\rm eff} \vec{g} T^2$$

Increase the scale factor

New tools

High order Bragg diffraction LMBS with up to N photons

Ultracold atomsFast generation on atom chip

Quantum dual gravi-gradio meter

- \rightarrow 2 ultracold Rb clouds obtained on 2 chips
- \rightarrow 2 clouds launched with elevator
- \rightarrow 2 Interferometers drived by LMTB

Targeted parameters $T_c = 2s \ N_{atoms} = 5.10^5$ $T_{emp} = 10 - 100nK$ $p = 100\hbar k \ 2T = 0.5s$

$$\sigma_{\rm g}^1 = 9 \times 10^{-11} m.s^{-2}.Hz^{-1/2}$$

If limitated by QNP

 $\Delta z = 1m$ $\sigma_{\text{grad}g} = 126 \ mE \ @1s$

> More than one order of magnitude better than state of the art

Observatoire de Paris

Quantum dual gravi-gradio meter, first results

Quantum dual gravi-gradio meter, first results

Observatoire de Paris

EGU 2020

LNE-SYRTE

13

Conclusions and Prospects

Quantum gravimeter demonstrated accurate and continous *g* measurements in a single instrument. *g* in $h_{LNE-2017}$, taken into account by CODATA for h_{2018} for new kg definition Measurement included in French geoïde.

International and National comparisons done to guarantee users and stakeholders .

QAI are now suitable for applications previously limited to superconducting gravimeters and/or free fall corner cube gravimeters.

AI technology transfered to industrie, commercial instruments already exist.

see D1574 EGU2020-8969 G.4.4 see D1566 EGU2020-9076 G.4.4

Performances will be improved with UC atoms, opening the « sea of problems » and new applications. \rightarrow sub-µGal objective

Dual **Gravi-Gradio** sensor under development. *The measurement of both quantities, which depend differently on the masses and their positions, will allow to resolve ambiguities between masses and positions of gravity anomaly sources.*

see D1741 EGU2020-9185 7th of may G.4.2

Onboard gravity mapping will soon be possible with UC atoms gradiometers based on LMBS.

- > Why not going to space ?
- ➤ Atoms are free falling but satelites also, (increase of T up to 10s?), 2T=5s, 2mE@1s

https://syrte.obspm.fr/spip/science/iaci/ https://syrte.obspm.fr/spip/science/iaci/publications/ 14

ilede**France** Demain s'invente ici

 μ quans

European Space Agency

FIRST

https://syrte.obspm.fr/spip/science/iaci/ https://syrte.obspm.fr/spip/science/iaci/publications/

Implement Ultracold Source on CAG

Evaporative cooling and *trapping* techniques with an *Optical Dipole Trap*

Parameters :

- A crossed dipole trap , total depth : 680 µK
- Laser Kheopsys 1550 nm, 30 W
- **First arm for large volume** P = 14.8 W, waist = 170 μm
- Second arm for tight confinement P = 8 W, waist = 27 μm

Access to a wide range of temperature from *50nK to 10µK*

<u>Comparison with other gravimeters</u>										
Type	Techno	Institut	Name	$ u_c $	u	$u_{w \mathrm{fab}}$	σ_g	au	Rq	
		/ Company		Hz	$\mu { m Gal}$	$\mu { m Gal}$	$\mu { m Gal}$	S		
Abs	FFCC	Micro-g	FG5X	0.3	2.0	•	~ 1.0	~ 100	dead time,	
		Lacoste		0.1		•	1.0	$\sim~700$	wearing	
Rel	Supra	GWR	iGrav	1.0	•	•	0.01	600	drift	
Abs	Atom	SYRTE	CAG	2.8	2.0	1.3	5.7	1	T=80ms	
						•	1.0	36	dropped atoms	
					•		0.06	20000		
Abs	Atom	HUB	GAIN	0.7	3.2	2.2	9.6	1	T=260ms	
					•	•	1.0	100	launched atoms	
					•		0.05	100 000		
Abs	Atom	HUST		0.5	5.0	•	4.2	1	T=300ms	
					•		1.0	18	launched atoms	
					•	•	0.3	200		
Abs	Atom	muquans	AQG		•	•	59.4	1		
					•	•	1.0	4000	dropped atoms	
					•	•	0.3	200 000		
Abs	Atom	AOSense			•	•	•			
Abs	Atom	M Squared			•	•	•			