

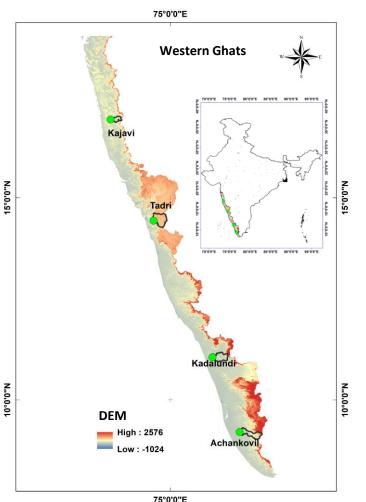
A Method for Bias Correction of Remotely Sensed Precipitation across Western Ghats Region of India

Aiswarya Kunnath-Poovakka and Eldho T Iype

Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India Email: aiswarya_kp@iitb.ac.in

EGU 2020 Sharing Geoscience Online | Session HS7.1-D298 - EGU2020-8431 | 5 May 2020 | Kunnath-Poovakka A and Eldho T I

The Western Ghats


- The western Ghats are the mountainous range with an area of 140,000 square kilometers, stretches to 1600 kilometers parallel to west coast of India
- It include a diversity of ecosystems ranging from tropical wet evergreen forests to montane grasslands
- West of western Ghats receives an average annual rainfall of 2000 mm to 7800mm

Problem Statement

Previous studies reported that most of the remotely sensed (RS) precipitation products underestimates rainfall in the Western Ghats region, especially during monsoon season

Research Objectives

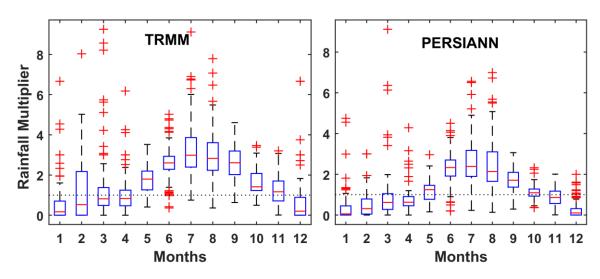
- Develop a generic approach for the bias correction of different satellite and processed rainfall products across Western Ghats region of India.
- Test the efficacy of bias corrected rainfall in hydrological modelling

Validation Catchments

S	River	Station	Area (km²)	Avg. Annual Rain (mm)
I	Achankovil	Thumpamon	810	2600
•	Kadalundi	Karathodu	750	3201
	Tadri	Santeguli	1090	2956
	Kajavi	Anjanari	315	2550

EGU 2020 Sharing Geoscience Online | Session HS7.1-D298 - EGU2020-8431 | 5 May 2020 | Kunnath-Poovakka A and Eldho T I

Methodology


 Quality controlled interpolated gridded rain gauge data from Indian Meteorological Department (IMD) is used as the base.

Product	Resolution	Source
IMD	0.25∘× .25∘	Indian Meteorological Department
TRMM_3B42_Daily	0.25°× .25°	NASA GES DISC
PERSIANN	0.25∘× .25∘	CHRS at the University of California, Irvine

- The bias between IMD and RS rainfall products follows a pattern, with higher positive bias during monsoon season in all the 126 rainfall grids of the Western Ghats region
- A rainfall multiplier (Ep) is calculated using the following equation for each month of the 126 grid cells

Ep = Average daily IMD rainfall of the month / Average daily RS rainfall of the month

- The *Ep* of each month for 126 grid cells forms the error distribution for that month
- Rainfall corrected with this error distribution is then used to run a hydrological model to get streamflow predictions

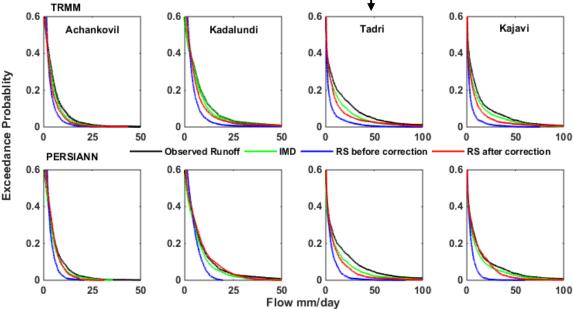

EGU 2020 Sharing Geoscience Online | Session HS7.1-D298 - EGU2020-8431 | 5 May 2020 | Kunnath-Poovakka A and Eldho T I

Fig : Comparison of cumulated daily rainfall before (top row) and after (bottom row) bias correction in the validation catchments →

- The efficacy of the bias corrected TRMM and PERSIANN rainfall is the tested with the help of GR4J rainfall-runoff model
- Model was calibrated and validated for the Period 2003-2007 and 2008-2010

Conclusions

- Systematic multiplicative bias was observed with RS precipitation products and IMD rainfall in the western Ghats region
- The proposed rainfall multiplier method helps to reduce the bias in different rainfall products and provide improved runoff estimations at Western Ghats.

 2×10^{4} 2.5×10^4 3.5×10^4 ×10⁴ Achankovil Kadalundi Tadri Kajavi 3 2.5 2 2.5 1.5 2 1.5 1.5 0.5 0.5 05 10 05 10 05 07 10 07 07 07 05 PERSIANN IMD 2 × 10 XIU XIU 2.5 3.5 3 Cumulative Rainfall(mm) 5.0 t 5.1 3 2.5 2 2.5 2 1.5 2 1.5 1.5 1 1 0.5 0.5 0.5 ٥ 10 05 07 10 05 07 10 05 07

EGU 2020 Sharing Geoscience Online | Session HS7.1-D298 - EGU2020-8431 | 5 May 2020 | Kunnath-Poovakka A and Eldho T I

10

10