'Dhservatolre \quad de Paris \quad SYTE

Towards a two-axis cold-atom gyroscope

for rotational seismology

Remi Geiger, Romain Gautier, Leonid Sidorenkov, Arnaud Landragin
SYRTE Laboratory, Paris Observatory and Sorbonne University

EGU - sharing geoscience online - May 6th, 2020

MAIRIE DE PARIS

Context

- Cold-atom interferometry: 1991
- 2020: more than 45 research groups (academic) and 7 companies
- Main idea: use well-controlled atoms and light-matter interaction to measure accurately inertial signals \rightarrow same spirit as for atomic clocks
- Target applications:

Tests of fundamental physics
(quantum mechanics, relativity)

Inertial navigation?

Metrology (kg, G, α) Geosciences

Outline

- Few examples of important achievements
- Principle of light-pulse atom interferometry
- High-stability cold-atom rate gyroscope

Famous example: the gravimeter

- First participation to international comparaisons of absolute gravimeters (2009)
- State-of-the art accuracy: $1.2 \times 10^{-9} \mathrm{~g}$ (stability $<10^{-10} \mathrm{~g}$)
- Used in the French Kibble Balance for the realization of the kg

SYRTE ultracold-atom gravimeter : R. Karcher et al, NJP 20, 113041 (2018)

Onboard atom interferometers

Simplified principle

Use free falling atoms to read the phase of a laser linked to an accelerated frame
\rightarrow Measurement of distances in units of laser wavelength

Principle of Atom Interferometry

- Analogy with a Mach-Zehnder optical interferometer
- Use laser pulses to coherently split and recombine an atomic wave

Two-wave interference signal : $P=P_{0}+A \cos (\Delta \Phi)$

Stimulated Roman transitions

Cesium atom, D_{2} line @ 852 nm

Momentum transfer
$k_{e f f}=k_{1}+k_{2} \sim 0.7 \mathrm{~cm} / \mathrm{s}$

$$
\left|e, \vec{p}+\hbar \overrightarrow{\mathrm{k}}_{\mathrm{eff}}\right\rangle
$$

$$
\vec{k}_{2}, \omega_{2} \downarrow
$$

$|f, \vec{p}|$

$$
\varphi=\phi_{1}-\phi_{2}=\overrightarrow{\mathrm{k}}_{\mathrm{eff}} \cdot \vec{r}(t)
$$

$$
|f, \vec{p}\rangle
$$

Laser phase difference imprinted on the atoms

Interferometer phase

Top path : $\varphi(0)-\varphi(T)$
$\longrightarrow \Delta \Phi=\varphi(0)-2 \varphi(T)+\varphi(2 T)=\frac{4 \pi g T^{2}}{\lambda}$
Bottom path : $\varphi(T)-\varphi(2 T)$

Absolute inertial sensor

Sensor output signal : $\Delta \Phi=\frac{4 \pi T^{2}}{\lambda} \times g$
\rightarrow the scale factor can be known with high accuracy $\left(<10^{-9}\right)$

Inertial sensitivity scales with T^{2}
\rightarrow want long T (few 100 ms typically)
\rightarrow need atoms with rms velocities $\sim \mathrm{cm} / \mathrm{s} \rightarrow \mu K$ temperatures

Orders of magnitude :

- $T=100 \mathrm{~ms} ; \lambda=0.5 \mu \mathrm{~m} ; \mathrm{SNR}=100$
- 1 measurement per second
\rightarrow Acceleration sensitivity $\sim 10^{-7} \mathrm{~m} . \mathrm{s}^{-2} / \sqrt{\mathrm{Hz}}$

Cold-atom gyroscope

Sagnac effect

$t=t_{0}$

$t=t_{0}+\delta t$
$\Delta \Phi_{\Omega}=\frac{4 \pi E}{h c^{2}} \vec{A} \cdot \vec{\Omega}$
Physical area of the interferometer
C.R. Physique 15, 875-883 (2014) arxiv:1412.0711

Photons versus atoms

Sagnac effect

Photons:

- A : cm^{2} to m^{2}
- $E \sim 1 \mathrm{eV}$

Atoms :

- A : mm^{2} to cm^{2}
- $E \sim 10^{11} \mathrm{eV}$
+11-2 = 9 orders of magnitude

Shot noise ($\sigma_{\phi} \simeq 1 / \sqrt{n}$):

- $10^{-9} \mathrm{rad} / \sqrt{\mathrm{Hz}}$ for photons
- $10^{-3} \mathrm{rad} / \sqrt{\mathrm{Hz}}$ for atoms

Shot noise ($\sigma_{\phi} \simeq 1 / \sqrt{n}$):

- $10^{-9} \mathrm{rad} / \sqrt{\mathrm{Hz}}$ for photons
- $10^{-3} \mathrm{rad} / \sqrt{\mathrm{Hz}}$ for atoms
-6 orders of magnitude

Gyroscope-accelerometer

$$
\Phi=\phi(0)-2 \phi(T)+\phi(2 T)=\vec{k}_{\text {eff }} \vec{a} T^{2}+\begin{gathered}
2 \vec{k}_{\text {eff }}(\vec{v} \times \vec{\Omega}) T^{2} \\
\text { acceleration } \\
\text { rotation }
\end{gathered}
$$

4-light pulse atom interferometer

$$
\Phi=\phi_{1}-2 \phi_{2}+\phi^{\prime}-\left(\phi^{\prime}-2 \phi_{3}+\phi_{4}\right)
$$

\rightarrow Zero sensitivity to DC acceleration (still sensitive to AC accelerations)
\rightarrow Pure rate gyroscope.

4-light pulse gyroscope

« Butterfly » configuration

Scale factor of the gyroscope

$$
\Phi_{\Omega}=\frac{1}{2} \vec{k}_{\mathrm{eff}} \cdot(\vec{g} \times \vec{\Omega}) T^{3}
$$

$$
\text { Area : } A=\frac{1}{4} \frac{\hbar k_{e f f} T^{3} g}{M}
$$

2.8 mm

800 ms interrogation time $\boldsymbol{\rightarrow} \mathbf{1 1} \mathbf{~ c m}^{\mathbf{2}}$ area
Earth rotation rate $\left(52 \mu \mathrm{rad} . \mathrm{s}^{-1}\right) \rightarrow 220 \mathrm{rad}$ phase shift

- Size: $1.5 \mathrm{~m} \times 0.7 \mathrm{~m} \times 0.7 \mathrm{~m}$
- 10^{7} Cesium atoms at $1.2 \mu \mathrm{~K}$
- launched vertically at $5 \mathrm{~m} . \mathrm{s}^{-1}$
- passive isolation platform (>0.4 Hz)
- 2 Magnetic shields
- ...

Vibration noise rejection

Vibration noise covers several rad rms

Vibration noise rejection

Vibration isolation platform

Merlet et al., Metrologia 46, 87-94 (2009) (c) (4)

Operation in the linear regime

Real-time calculation of the vibration-induced phase (at each shot)

+ feedback to the Raman laser relative phase
+ lock at mid-fringe \rightarrow operation in the linear regime.
J. Lautier et al, Appl. Phys. Lett. 105, 144102 (2014@ (a)

Operation in the linear regime

Removing dead times and

increasing the sampling rates

I. Dutta et al., PRL 116, 183003 (2016)
D. Savoie, M. Altorio et al, Science Advances, eaau7948 (2018)

Dead times in quantum sensors

Sequential operation of cold atom interferometers:
\longleftarrow Cycle time T_{C}

Dead times \rightarrow (inertial) noise aliasing + loss of information

\rightarrow prevents from reaching the quantum noise limit.

Ingredient \# 1: Continuous sensor

Joint interrogation: prepare the cold atoms and operate the interferometer in parallel

Ingredient \#2: interleaving

We interleave several sequences of long-T interferometers
$\rightarrow T_{c}=2 T / 3=267 \mathrm{~ms}$ (3.75 Hz cycling frequency)

Gyroscope stability

Savoie et al, Science Advances (2018)

Gyroscope stability

Dynamic rotation rates

Apply sinusoïdal modulations of the rotation rate

Dynamic rotation rates

Modulation with 10 s period

Dynamic rotation rates

Our measurements match with the expectation within 5% accurary

Next generation of gyroscope

de Paris

- Current sensitivity to ground rotations (detection noise limit): $5 \mathrm{nrad} . \mathrm{s}^{-1} / \sqrt{\mathrm{Hz}}$
- Maximum sampling rate: 4 Hz
- One axis gyro (horizontal)

Design of a new setup

- Two axes (horizontal)
- Improved detection noise floor: $0.1 \mathrm{nrad} . \mathrm{s}^{-1} / \sqrt{\mathrm{Hz}}$
- Sampling rate of 10 Hz
- Improved stability: operation during several days

The cold-atom gyroscope team Pemie
Intin

M. Altorio
D. Savoie
B. Fang

Thank you for your attention

PhD and postdoc positions available https://syrte.obspm.fr

Dynamic rotation rates

$$
\begin{equation*}
\Phi=\frac{1}{2} \vec{k}_{\mathrm{eff}} \cdot\left(\vec{\Omega}_{E} \times \vec{g}\right) T^{3} \tag{usualterm}
\end{equation*}
$$

$+\frac{3}{4} \vec{k}_{\mathrm{eff}} \cdot\left(\vec{\Omega}_{F} \times \vec{g}+\vec{\Omega}_{R} \times \vec{a}+\vec{\Omega}_{P} \times \vec{a}\right) T^{3} \quad$ (modulation term)

$$
\Phi_{\mathrm{dyn}}(t) \simeq \frac{3}{4} \vec{k}_{\mathrm{eff}} \cdot\left(\vec{\Omega}_{F}(t) \times \vec{g}\right) T^{3}
$$

