

Towards a two-axis cold-atom gyroscope

for rotational seismology

Remi Geiger, Romain Gautier, Leonid Sidorenkov, Arnaud Landragin

SYRTE Laboratory, Paris Observatory and Sorbonne University

EGU - sharing geoscience online – May 6th, 2020

Context

- Cold-atom interferometry: 1991
- 2020: more than 45 research groups (academic) and 7 companies
- Main idea: use well-controlled atoms and light-matter interaction to measure accurately inertial signals → same spirit as for atomic clocks
- Target applications:

Tests of fundamental physics

(quantum mechanics, relativity)

Metrology (kg, G, α)

Geosciences

Inertial navigation?

Gravitational wave detection?

Review: https://arxiv.org/abs/2003.12516

- Few examples of important achievements
- Principle of light-pulse atom interferometry
- High-stability cold-atom rate gyroscope

Famous example: the gravimeter

• First participation to international comparaisons of absolute gravimeters (2009)

bservatoire

SYRTE

- State-of-the art accuracy: $1.2 \times 10^{-9} g$ (stability $< 10^{-10} g$)
- Used in the French Kibble Balance for the realization of the kg

SYRTE ultracold-atom gravimeter : R. Karcher et al, NJP 20, 113041 (2019)

Onboard atom interferometers

Bouyer' group (France) Nature Commun. **2**, 474 (2011)

Absolute marine gravimetry

ONERA team (France) Nature Commun. **9**, 627 (2018)

Use free falling atoms to read the phase of a laser linked to an accelerated frame

 \rightarrow Measurement of distances in units of laser wavelength

Orders of magnitude :

- T = 100 ms; $\lambda = 0.5 \mu m$;
- Resolution ~ $\lambda/100$ (SNR = 100)
- 1 measurement per second

→ Acceleration sensitivity ~ $10^{-7} m. s^{-2} / \sqrt{Hz}$

Principle of Atom Interferometry

- Analogy with a Mach-Zehnder optical interferometer
- Use laser pulses to coherently split and recombine an atomic wave

Two-wave interference signal : $P = P_0 + A \cos(\Delta \Phi)$

Stimulated Raman transitions

Interferometer phase

Top path : $\varphi(0) - \varphi(T)$ Bottom path : $\varphi(T) - \varphi(2T)$ $\longrightarrow \Delta \Phi = \varphi(0) - 2\varphi(T) + \varphi(2T) = \frac{4\pi g T^2}{\lambda}$

Sampling of the atomic trajectory with a laser ruler at 3 different times.

Sensor output signal :
$$\Delta \Phi = \frac{4\pi T^2}{\lambda} \times g$$

 \rightarrow the scale factor can be known with high accuracy (< 10^{-9})

Inertial sensitivity scales with T^2

 \rightarrow want long T (few 100 ms typically)

 \rightarrow need atoms with rms velocities $\sim cm/s \rightarrow \mu K$ temperatures

Orders of magnitude :

- T = 100 ms; $\lambda = 0.5 \mu m$; SNR = 100
- 1 measurement per second

→ Acceleration sensitivity ~ $10^{-7} m. s^{-2} / \sqrt{Hz}$

Cold-atom gyroscope

Photons versus atoms

Sagnac effect

Physical area of the interferometer

C.R. Physique 15, 875-883 (2014) arxiv:1412.0711

Photons versus atoms

Sagnac effect

 $t = t_0 \qquad \qquad t = t_0 + \delta t$

Shot noise ($\sigma_{\phi} \simeq 1/\sqrt{n}$):

- $10^{-9} rad/\sqrt{Hz}$ for photons
- $10^{-3} rad/\sqrt{Hz}$ for atoms

Photons :

- A : cm² to m²
- *E*~1eV

Atoms :

- A : mm² to cm²
- *E*~10¹¹eV

+11 - 2 = 9 orders of magnitude

Shot noise ($\sigma_{\phi} \simeq 1/\sqrt{n}$):

- $10^{-9} rad / \sqrt{Hz}$ for photons
- $10^{-3} rad/\sqrt{Hz}$ for atoms

-6 orders of magnitude

C.R. Physique 15, 875-883 (2014), arxiv:1412.0711

$$\begin{split} \Phi = \phi(0) - 2\phi(T) + \phi(2T) = \vec{k}_{eff}\vec{a}T^2 + & 2\vec{k}_{eff}(\vec{v}\times\vec{\Omega})T^2 \\ \text{acceleration} & \text{rotation} \end{split}$$

4-light pulse atom interferometer

Ŧ

$$\Phi = \phi_1 - 2\phi_2 + \phi' - (\phi' - 2\phi_3 + \phi_4)$$

→ Zero sensitivity to DC acceleration (still sensitive to AC accelerations)
→ Pure rate gyroscope.

B. Canuel et al., PRL 97, 010402 (2006)

4-light pulse gyroscope

Scale factor of the gyroscope

- Size: 1.5 m x 0.7 m x 0.7 m
- * 10^7 Cesium atoms at 1.2 μ K
- launched vertically at 5 $m.s^{-1}$
- passive isolation platform (> 0.4 Hz)
- 2 Magnetic shields

Vibration noise rejection

Vibration isolation platform

Vibration noise rejection

Vibration isolation platform

Merlet et al., Metrologia 46, 87–94 (2009) (cc

Operation in the linear regime

Real-time calculation of the vibration-induced phase (at each shot)

+ feedback to the Raman laser relative phase

+ lock at mid-fringe \rightarrow operation in the linear regime.

J. Lautier et al, Appl. Phys. Lett. 105, 144102 (2014

Operation in the linear regime

increasing the sampling rates

I. Dutta et al., PRL 116, 183003 (2016)

D. Savoie, M. Altorio et al, Science Advances, eaau7948 (2018)

Sequential operation of cold atom interferometers:

Dead times \rightarrow (inertial) noise aliasing + loss of information \rightarrow prevents from reaching the quantum noise limit.

Ingredient # 1: Continuous sensor

Systèmes de Référence Temps-Espace

Joint interrogation: prepare the cold atoms and operate the interferometer in parallel

Ingredient #2: interleaving

We interleave several sequences of long-T interferometers

 \rightarrow T_c = 2T/3 = 267 ms (3.75 Hz cycling frequency)

Gyroscope stability

Systèmes de Référence Temps-Espace

Gyroscope stability

Dynamic rotation rates

Apply sinusoïdal modulations of the rotation rate

Х

$$\vec{\Omega} = \Omega_0 \cos(\omega t) \overrightarrow{u_y}$$

with $\Omega_0 \sim {\rm few} \; 10^{-7} \; rad. \, s^{-1}$

Dynamic rotation rates

Dynamic rotation rates

0.10

0.12

Our measurements match with the expectation within 5% accuracy

Frequency (Hz)

0.16

0.18

0.20

0.22

0.14

Next generation of gyroscope

- Current sensitivity to ground rotations (detection noise limit): $5 nrad. s^{-1}/\sqrt{Hz}$
- Maximum sampling rate: 4 Hz
- One axis gyro (horizontal)

Design of a new setup

- Two axes (horizontal)
- Improved detection noise floor: $0.1 \ nrad. \ s^{-1} / \sqrt{Hz}$
- Sampling rate of 10 Hz
- Improved stability: operation during several days

Thank you for your attention

AR

Ar

PhD and postdoc positions available

https://syrte.obspm.fr

.

$$\begin{split} \Phi &= \frac{1}{2} \vec{k}_{\text{eff}} \cdot (\vec{\Omega}_E \times \vec{g}) T^3 \qquad \text{(usual term)} \\ &+ \frac{3}{4} \vec{k}_{\text{eff}} \cdot (\vec{\Omega}_F \times \vec{g} + \vec{\Omega}_F \times \vec{a} + \vec{\Omega}_F \times \vec{a}) T^3 \qquad \text{(modulation term)} \\ & \hline \Phi_{\text{dyn}}(t) \simeq \frac{3}{4} \vec{k}_{\text{eff}} \cdot (\vec{\Omega}_F(t) \times \vec{g}) T^3 \end{split}$$

