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Hourly precipitation extremes measured at KNMI
stations: before and after 2000
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Number of stations
not constant over
time, but total
number of
observations before
and after 2000 are
~ equal
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A short course in atmospheric thermodynamics

 Dew point temperature:
= Temperature at which the air reaches saturation when cooled

= Measure of the amount of atmospheric water vapor (absolute humidity)

= 1-degree warming equals 6-7% more water vapor (Clausius-Clapeyron
relation)

= Typical range summer: 8-22 °C (>22 °C tropical)

= Relative humidity:

= Ratio between saturation water vapor at a temperature and the actual
amount of water vapor

= At constant relative humidity: 1-degree temperature rise implies a
~1-degree dew point temperature rise
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Scaling
precipitation extremes on (dew point) temperature

Pair hourly precipitation with near
surface (dew point) temperature

Pool data based on dew point
temperature into bins, typically 2
degrees wide

From binned pooled data compute
percentiles hourly precipitation e.g.
99th percentile £ highest 1%
precipitation (usually taking only wet
events)
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Scaling of daily precipitation extremes
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dew point temperature [degC]

No surprises

Extremes follow

approximately the

Clausius-Clapeyron

prediction:

« each degree of

warming in dew point
is equivalent to 6-7%
more moisture and
results in 6-7% more
rainfall

fit is not very good for
daily rainfall
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« A big difference, much
stronger dependencies on
dew point temperature

« Extremes follow
approximately the 2 times
the Clausius-Clapeyron
prediction, 2CC:

« each degree of
warming in dew point
is equivalent to 6-7%
more moisture, but
results in 12-14 %
more rainfall

 Note the more regular

behaviour



How is super-CC (>7% per degree) scaling possible?

Hypothesis:

Latent heat produced by condensation
can feedback on to cloud dynamics, and
lead to stronger/bigger clouds under
warmer conditions

the same rate as
the moisture increase, namely 7% K™ with warming.
In fact the rate of increase can even exceed this be-
cause the additional latent heat released feeds back

and invigorates the storm that causes the rain in the
first place, further enhancing convergence of mois-
ture.’ Trenberth et al. 2003, BAMS

moister conditions



Can we see evidence for this mechanism?
statistics from tracking rain cells in rain radar (NL)

— 97.5%
— 95%
— 90%
CC scaling
2CC scaling

— 97.5%

— 95%

— 90%
CC scaling
2CC scaling

intensity [mm/5 min]
intensity [mm/5 min]

Sub-selecting 'ceIIs between 5-8 km Selecting all cells >5 km

Lochbihler et al 2017
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Some degree of universality in scaling
hourly rainfall in The Netherlands and Hong Kong

Note:
« Only found using dew
point temperature

« Both are moist climate
zones (close to ocean)

« Different relations
found (less steep) for
more continental areas
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A “heated” debate on scaling
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Does scaling relate to climate change?
We know in 2020

Increase in hourly precipitation extremes N a t u re g e O S C | e n Ce 2 0 0 8

beyond expectations from

temperature changes

« Temperature is not the
appropriate variable ->
use of dew point
temperature

14% per
degree as a
predictor of
the response
of extremes

« The hydrostatic model
used in 2008 is likely
not good enough to

to climate

change? look at hourly extremes
Observations Long term climate - Dependencies derived
mostly change response in a from present-day
affected by (at that time climate variability may
present-day start-of-art) climate be different from long-
climate variability model, 25 km resolution) term response
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Hydrostatic (old generation, 12km) versus convection-
permitting (new generation, 2.5 km) model

Max. hourly precipitation over 10 summer months (both @ 12x12km2 scale)

Hydrostatic Convection

model: permitting

- Generally model:
too low - Generally
intensities higher

- Very few, intensities
very intense - More
and very evenly
organized distributed
showers - Much more

realistic
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Scaling is not necessarily a good indicator for the
climate change response in precipitation extremes

> Scaling is "assumed” to represent predominantly the
thermodynamic response: the humidity influence, including direct
cloud feedbacks, on precipitation extremes (amount/intensity)?.

> Yet, other effects may play a role as well, at least in a climate
change context:
— large-scale circulation changes
— atmospheric stability changes, changes in relative humidity

— changes in the frequency of rain

> How much does this matter?
l Lenderink et al. J. Climate 2017
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A simple warming experiment to estimate the thermodynamic
response; response in hourly extremes over Mediterranean sea

10 summer months 10 autumn months

Med. Sea sea poin CONVection- permlttlng model HCLIM
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poocled fraction of exceedance (0..1) poocled fraction of exceedance (0..1)

Lenderink et al. ERL 2019
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A full (GCM driven) climate change experiment
response in hourly extremes over western EU continent

Harmonie-climate (HCLIM) @
2.5 km resolution

P nt- F
n{gzgégzérived £ 2089-2099 vs. 1996-2005
N nt” scalin |
jff?y;ep;r sC|ceagLege ” Boundaries: ECEARTH global
(consistent with 2 climate model
observations) "é,
E Response normal
g extremes (~30
pr_max SHY mm/hour in
ALL DOMAIN land <400m .
control climate)
1e-02 1e-04 1e-06 i approximately 7 %
pooled fraction of exceedance (0..1) per degree (CC
rate)

Lenderink et al. 2020, in draft
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A full (GCM driven) climate change experiment
response in hourly extremes over western EU continent

Present-day
derived “apparent”
scaling ~14 % per
degree

Lenderink et al. Philosophical

Transactions A, INTENSE special issue |

(in prep.)
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change T (P99/wet) = 1.94/2.11
P99 Pr (ctlfut) = 4.08/3.81
change freq. = -20%

pr_max SHY
ALL DOMAIN land <400m

1e-02 1e-04 1e-06

pooled fraction of exceedance (0..1)

Response strongest
extremes (~60
mm/hour in control
climate) approximately
14 % per degree (2CC
rate)

Similar behaviour is
found a different 10-
year experiment with
HCLIM

Yet, others appear to
find contradictory
results
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Learning from even higher resolution models
Large eddy simulation @200m resolution to study cloud

dynamics
4K cooler reference +4K warmer
————— LES idealized case of

one heavy
convective day
(composited forcing
from observations)

Domain: 200x200
km?2

Idealized
warming/cooling
50 100 150 experiment
X [km]
Rain intensity (mm/5-min)

Lochbihler et al, JGR, 2019
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Under warmer conditions bigger cell tend to
produce much more rain

Lessons from LES.

Warmer conditions lead stronger cloud

dynamics:

« Faster growth of rain cells

« Bigger, more intense cells at the
expense of smaller cells:
redistribution of rain cell sizes

« More organization
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But, limiting effects by moisture

Statistic: availability are apparent too

Rain rate
aggregated over
rain-cell area

O
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Lochbihler et al, JGR, 2019; Lochbihler et al. 2020 (in prep)
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Summary

> Dew point temgerature scaling provide surprising
insights in the behaviour of precipitation extremes

» Dependencies beyond the Clausius-Clapeyron (CC) rate
(6-7% per degree) are possible — super Clausius-
Clapeyron scaling — even up to a 2CC rate

» Evidence points to strong relations between super-CC
behaviour and cloud size/organization (bigger clouds at
warm conditions)

> To degree to which present-day derived scaling rates are
reflected in the climate chan dge response of precipitation
extremes is strongly debate

» But, some evidence exists that the heaviest extremes
respond close to the rate predicted by scaling

10-min precipitation [mm/10-min]
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