Plants possibility to control gas exchanges via mucilage

Adrian Haupenthal, Mathilde Brax, Klaus Schützenmeister, Hermann Jungkunst, Jonas Bentz, Eva Kröner

Motivation

Carbon

dioxide

 Mucilage plays a key role in shaping the physical properties of the rhizosphere.

How does mucilage affect soil gas diffusion?

Oxygen

Mucilage – a rhizodeposition

- Chia seed mucilage as a model for plant mucilage
- Similar physical properties as plant mucilage:
 - Can hold large amounts of water
 - More viscous as maize or barley mucilage
- Freeze-dried and pulverized after collection

State of the art

Diffusion:

- Main process for gas movement in soil.
- Most important factor for controlling soil-gas diffusion is the gas diffusion coefficient D (cm^2/s^{-1})
- D highly depends on air-filled pore-connectivity and tortuosity.

Model for root respiration (Ben-Noah and Friedman, 2018 VZJ):

- Diffusive resistance of the mucilage layer is one of the dominant factors in determining respiration rate.
- Thickness of mucilage is limiting respiration rate
- But increasing viscosity of drying mucilage is expected to have a much higher influence ->
 diminishing positive effect of reducing mucilage thickness at lower water potentials

Existing models treat mucilage as an uniform layer coating the root

Environmental Scanning Electron Microscopy

- Glass beads, diameter: 0.2mm
- Mixed with chia seed mucilage
- Oven-dried for 24h at 30° C
- Concentrations: 0.16%; 0.25%; 0.49%
- Chamber pressure: 60 80 Pa
- Acceleration voltage: 12.5 15 kV

https://www.fei.com/products/sem/quanta-sem/

Environmental Scanning Electron Microscopy

(a), (d) **0.16%**: thin filaments span throughout the pore space

(b), (e) 0.25%; (c), (f) 0.49%:
mucilage forms hollow cylinders up to interconnected surfaces

During drying mucilage forms liquid bridges between particles

Conceptual model

Hypothesis:

- At low concentration of mucilage, thin filaments have a small effect on gas diffusion
- At high concentration, mucilage is able to block pores, disconnecting the gas phase and reduce gas diffusion significantly

Soil samples

- Soil particle size: 500-630 μm
- Mixed with chia seed mucilage
- Dry chia seed mucilage was diluted in water
- Amount of water was according to soil maximum water capacity
 - **→** No change in porosity during drying
- Concentrations: **0%**; **0.1%**; **0.3%**; **0.6%**
- Drying for 48 h at 20°C ± 1°C
 - **→** Gravimetric water content < 1%

Weight	Volume	Area	Height	Bulk density	Porosity
10 g	5.77 cm ³	9.62 cm ²	0.6 cm	1.74±0.01 gcm ⁻³	0.34±0.01 cm ³ cm ⁻³

Gas diffusion measurements

- Gas diffusion coefficient $oldsymbol{D_p}$ as a function of mucilage
- Diffusion chamber method (Rolston and Moldrup 2002)
- Tracer gas: Oxygen; diffusion coefficient in free air D_0 = 0.231 cm^2s^{-1}
- Temperature: 20°C ± 1°C

Gas diffusion measurements

Gravimetric water content < 1%

Diffusion coefficient decreases with increasing mucilage concentration

Summary

- During drying mucilage forms liquid bridges between soil particles
- With increasing mucilage concentration gas diffusion coefficient decreases

Next Steps

- We look forward to gain a better understanding of the influence of mucilage on soil gas diffusion using experimental and modelling techniques
- Variation of soil and mucilage properties, e.g. particle size distribution, water content, mucilage type,...
- How interactions with microbial communities additionally alter how plants control soil gas exchanges

