Photovoltaic solar parks promote land surface cool islands Li Guoqing^{1,2}, Rebecca R Hernandez^{3,4}, George Alan Blackburn², Gemma Davies², Merryn Hunt², James Duncan Whyatt², & Alona Armstrong^{2,5} ¹School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong Province, 264025, China ²Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom ³Department of Land, Air & Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA ⁴Wild Energy Initiative, John Muir Institute of the Environment, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA ⁵Energy Lancaster, Lancaster University, Lancaster, LA1 4YF, United Kingdom a.armstrong@Lancaster.ac.uk, @Alona_Armstrong Putting environment into the energy transition Climate change → Renewable energy → land use change # Land use change for renewables for ecosystem services & natural capital Potential to address climatological and ecological disasters through renewable energy # Land use change for renewables Plethora of ecosystem properties and processes potentially impacted. How do we best resolve likely impacts? Understand how renewable energy infrastructure effects the local climate. # Study sites & methods Two ground-mounted large-scale fixed axis PV solar parks Longyangxia Solar Park, Qinghai Province, China. - 850 MW - Mean annual solar radiation: 15,742 kJ m⁻² day⁻¹ Stateline Solar Facility California, USA. - 300 MW - Mean annual solar radiation; 19,616 kJ m⁻² day⁻¹ ### Methods #### Landsat: One image per month before and after construction (n=24). Processed using google earth engine. #### Field data (Stateline only): Evening transects using a infrared thermometer gun every 10 m. ## Longyangxia - Landsat ### Stateline - Landsat ### Stateline - field ### Mechanism #### **Conclusions** - A measurable LST cool island effect: - Extended up to 730 m away from the solar park boundary - Cooling of up to several degrees Celsius - Evident in Landsat data and field data - Microclimate impacts extend well beyond the site boundary - Potential implications for ecosystem processes in surrounding landscape ### Thank you Contact: a.armstrong@lancaster.ac.uk or @Alona_Armstrong Find out more here: www.energyenvironment.co.uk #### Acknowledgements: LG received financial support from the National Natural Science Fund of China (grant number: 41601598), the Talent Project of Ludong University (grant number: LY2014020), the Higher Education Science and Technology Program of Shandong Province (grant number: J16LH51). AA was supported by an NERC Industrial Innovation Fellowship (grant number: NE/R013489/1). We thank Sarahi Lynneth Vargas Garcia for her assistance in typing up the field data.