

Photovoltaic solar parks promote land surface cool islands

Li Guoqing^{1,2}, Rebecca R Hernandez^{3,4}, George Alan Blackburn², Gemma Davies², Merryn Hunt², James Duncan Whyatt², & Alona Armstrong^{2,5}

¹School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong Province, 264025, China
²Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom

³Department of Land, Air & Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

⁴Wild Energy Initiative, John Muir Institute of the Environment, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

⁵Energy Lancaster, Lancaster University, Lancaster, LA1 4YF, United Kingdom

a.armstrong@Lancaster.ac.uk, @Alona_Armstrong

Putting environment into the energy transition

Climate change → Renewable energy → land use change

Land use change for renewables

for ecosystem services & natural capital

Potential to address climatological and ecological disasters through renewable energy

Land use change for renewables

Plethora of ecosystem properties and processes potentially impacted.

How do we best resolve likely impacts?

Understand how renewable energy infrastructure effects the local climate.

Study sites & methods

Two ground-mounted large-scale fixed axis PV solar parks

Longyangxia Solar Park, Qinghai Province, China.

- 850 MW
- Mean annual solar radiation:
 15,742 kJ m⁻² day⁻¹

Stateline Solar Facility California, USA.

- 300 MW
 - Mean annual solar radiation; 19,616 kJ m⁻² day⁻¹

Methods

Landsat:

 One image per month before and after construction (n=24).
 Processed using google earth engine.

Field data (Stateline only):

 Evening transects using a infrared thermometer gun every 10 m.

Longyangxia - Landsat

Stateline - Landsat

Stateline - field

Mechanism

Conclusions

- A measurable LST cool island effect:
 - Extended up to 730 m away from the solar park boundary
 - Cooling of up to several degrees Celsius
 - Evident in Landsat data and field data
- Microclimate impacts extend well beyond the site boundary
- Potential implications for ecosystem processes in surrounding landscape

Thank you

Contact: a.armstrong@lancaster.ac.uk or @Alona_Armstrong

Find out more here: www.energyenvironment.co.uk

Acknowledgements:

LG received financial support from the National Natural Science Fund of China (grant number: 41601598), the Talent Project of Ludong University (grant number: LY2014020), the Higher Education Science and Technology Program of Shandong Province (grant number: J16LH51).

AA was supported by an NERC Industrial Innovation Fellowship (grant number: NE/R013489/1). We thank Sarahi Lynneth Vargas Garcia for her assistance in typing up the field data.

