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** Electro-kinetic processes link hydraulic flow, electrical flow and the
passage of elastic waves through porous media.

s Passage of elastic waves causes fluid to flow, and that flow gives rise to
an electrical streaming potential and electrical counter-current.

** These processes are frequency-dependent and governed by coupling
coefficients which are themselves frequency-dependent.

processes

** The link between fluid pressure and fluid flow is described by dynamic
permeability, which is characterised by the hydraulic coupling
coefficient (Cy).

** The link between fluid pressure and electrical streaming potential is
characterised by the streaming potential coefficient (C
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** While the steady-state values of such coefficients are well

studied and understood, their frequency dependence is not.

** Previous work has been confined to unconsolidated and
disaggregated materials such as sands, gravels and soils.

** In this work we present two apparatuses for measuring the
hydraulic, streaming potential and electroseismic
coefficients of high porosity, high permeability consolidated
porous media and shales as a function of frequency.
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% The apparatus-operatesin-the range 1 Hz to'2-kHz with a sampl

e

mm diameter and 5 to 30 mm in length.

R

» The full design and validation of the apparatus is described together
with the experimental protocol it uses.

Initial data is presented for three samples of Boise sandstone, which
present as disersive media with the critical transition frequency of
918.3+99.4 Hz.

The in-phase and in-quadrature
components of the measured hydraulic
and streaming potential coefficients have
been compared to the Debye type
dispersion model as well as theoretical
models based on bundles of capillary
tubes and porous media.
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The apparatus operates in the range 1 Hz to 2 kHz with a sample of
10 mm diameter and 5 to 30 mm in length.

The full design and validation of the apparatus is described
together with the experimental protocol it uses.

Initial data is presented for three samples of Boise sandstone,
which present as dispersive media with the critical transition
frequency of 918.3+99.4 Hz.

The in-phase and in-quadrature components of the measured
hydraulic and streaming potential coefficients have been compared
to the Debye type dispersion model as well as theoretical models
based on bundles of capillary tubes and porous media.
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| ForBundles of Capillary Tubes (Packard Models)

The hydraulic coupling coefficient (Cy)) is expressed in velocity of flow per pressure difference, which is related to the
dynamic permeability, and is given by (Packard, 1953)

—iwp
n

where k =

’

= ulw) it B2 )
Chp  AP(w)  7ik? [rca Jo(ka) 1] ;

and where [ and a are the length and the radius of the capillaries (in m), and /, and /, are Bessel functions of the first and
zeroth kind, respectively.

The streaming potential coefficient can also be obtained from Eq. (1) as (Packard, 1953)

—iwp
n

Csp i AV(w) & [-2 jl(ka)] ' e

AP(w) no Lka Jo(ka)

’

and where ¢is the fluid permittivity (in F/m), {’is the zeta potential (in V), and ois the electrical conductivity of the fluid (in
S/m)
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P otio: Media.

While the previous equations were derived for bundles of capillary tubes, Pride (1994) provided an equation for streaming
potential coupling coefficient for porous media that is based on the theory of the electric double layer

21—1/2
N AV(a))_i _.ﬂm* _12 Sy . A
CSp o AP(w) % no 1 lwt 4 ( SA) <1 ! n ¢ where m” = TekDC’

where w, is the critical (transition) frequency (in rads/s), o is the Debye length (in m) (see Glover, 2015), A is the
characteristic pore size (in m), &k, is the steady state permeability (in m2) and 7, is the electrical tortuosity (7, = ¢*™, where
m is the cementation exponent (see Glover, 2015)).

Walker and Glover (2010) provided a simplification of Eq. (4) for the case where A>>/, i.e., when the pore fluid is medium
to high salinity. Since the experiments carried out in this work were for pore fluids of a salinity C;= 0.1 mol/dm3, the Pride
model and its simplification provide almost identical values.
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with relevant fitted theoretical curves
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Table 3. Basic petrophysical-characteristics of the sample ial ; S u m ata

| variable Units B1IV B2l B3IV
Modal grain size (laser diffractometry) x10® m 221 223 209
Modal pore throat size (MICP) x10® m 21.1 22.2 21.5
Modal pore size re [calculated, Glover and Walker (2009)] x10® m 33.9 34.97 35.3
Modal pore throat size [calculated, Glover and Déry (2010)] x10® m 20.5 21.1 21.3
Cementation exponent (-) 1.629 1.677 1.651
Formation factor using m and ¢sat (-) 6.92 6.59 6.21
Helium porosity (-) 0.299 0.296 0.305
Saturation porosity (-) 0.305 0.325 0.331
Mercury porosity (-) 0.284 0.279 0.242
Surface conductivity x10%S/m 13.6 32 13.4
Fluid pH during measurement (-) 7.2 6.94 6.61
Measured permeability (High salinity) x1012 m? 5.275 5.872 6.033
Fluid density kg/m?3 997 997 997
Fluid viscosity Pa.s 8.90E-04 8.90E-04 8.90E-04
Predicted feit from effective pore radius Hz 986 929 910
ferit from Debye fit to measured Cpp, data (Figure 8) Hz 958145 898145 885145
rett from Debye fit to measured Cyp data (Figure 8) x10° m 34.4£1.5 35.6%£1.5 35.8%£1.5
Ieft from Packard fit to measured Ch, data (Figure 8) x10° m 29.0+1.7 31.0+1.7 31.0+1.7
ferit from Pride/Walker and Glover fit to measured Cs, data (Figure 9) Hz 965165 909465 895465
lett calculated using Eq. (5) from Pride/Walker and Glover f.it value x10® m 34.3+2.4 35.4+2.4 35.612.4

introduction | __Theory ] Electrokinetic_JEK Results J Seismoelectric | _SE Results _J Summary |




e An apparatus for the measurement of the streaming potential coefficient of

C

=
®) high permeability porous media including high porosity rocks has been
- designed, constructed and tested.
- Bk
M — ® The apparatus can also be used to measure the dynamic permeability of high
:(5 e permeability porous media.
O
@ o The apparatus may be used for frequencies between 1 Hz and 2 kHz, for
: e cylindrical samples of 10 mm and lengths between 5 mm and 30 mm. The
O 8_- lower limit of permeability is 10 mD (9.869x10-1> m?), for which short samples
= < must be used.
(qV)
c e Dynamic permeability can be measured to within £6.1%, and streaming
c potential coefficient to within £9.2%.
(/3) e The apparatus has been used to obtain data on three samples of Boise

sandstone.
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Summary of the Harmonic

Approach 2

The critical frequency was explicitly measureable on the high permeability
Boise sandstone, which was 918.3+99.4 Hz (+9.24%) overall, but less than
+3.4% for individual samples.

Characteristic pore radius were both calculated from the critical frequencies
and compared well with independent experimental measurements.

Fits of the Debye model to C,,; data and the Pride model to C,, data enabled
the calculation of characteristic pore size to within 2%, while fits of the
Packard model to C,,; data were 12% underestimated.

While the restriction for using this apparatus only on high permeability
porous media strictly limits the apparatus in geosciences, these
measurements may find a greater application in chemical engineering where
high porosity and permeability porous media are more common.
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Diagram of the

apparatus
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= Synthetic Samples

Synthetic samples can be (Z—?;:_—:—;—_——: =T | |

created to be fracture free o o W ® | ] |' |

(A1), or have fractures to ‘ #® 4 l' | l || N 7
different degrees in » o ® ||| | ||' | ' X

different directions ® : ® ® o 'I || ||'
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Sample Porosity (per Permeability Sample Porosity (per Permeability
number cent) (x107"m?) number cent) (%10~ m?)

NI 10.84 0.001 NI15 11.75 0.263
N2 13.44 0.002 Nl16 10.88 0.506
N3 12.40 0.004 N17 10.37 0.624
N4 12.15 0.007 NI18 12.24 1.192
N5 15.98 0.020 NI19 14.11 2.161
N6 10.96 0.023 N20 10.00 3.390
N7 12.16 0.025 N21 12.60 11.450
N8 10.93 0.034 N22 16.30 13.135
N9 13.03 0.079 N23 9.92 13.291
N10 9.91 0.060 N24 12.54 19.090
N1l 12.92 0.117 N25 14.20 32.828
N12 13.62 0.122 N26 14.23 45.100
N13 11.29 0.134 N27 16.17 37.400
Ni4 15.05 0.259 N28 11.94 69.488
Al 23.8 310.79 A3y 23.8 1696.30
Alx 23.8 847.21 A3z 23.8 370.43
Aly 238 876.10 Adx 23.8 2053.27
A2z 23.8 325.53 Ady 23.8 2164.32
Aldx 23.8 1509.34 Adz 23.8 427.39

Notes: Samples labelled N are natural rock samples, and those labelled A are artificial fractured sandstones. Al 1s the sandstone without cracks, while the labels
x, v and z represent the direction of wave propagation as defined in Fig. 3. The porosity is effective porosity acquired by helium porosimetry measurements.
Permeability 1s Klinkenberg-corrected permeability ( Klinkenberg 1941).
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- ~ Theoretical Modelling
Poosiy045  c0=1.5 mg/dm’, Permeability = 50 <10 m’ (using the Packard, 1953 capillary
bundle model)
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Recorded Pressure
and Potential Signals
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/
 Experimental Results on Natural'Rocks with Variable Porosity

Seismoelectric coupling coefficients follow the expected relationship with permeability despite
their different porosities (between 9.91% and 16.3%) and consequently agree with modelling

for frequencies of both 10 kHz and 500 kHz

-8
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ntal Resu th Fixed
Porosity

For synthetic rocks, where the porosity can be controlled, the seismoelectric coupling coefficients
follow the expected relationship with permeability and consequently agree with modelling for
frequencies of both 10 kHz and 500 kHz, and are approximately correct at 1 kHz.
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Summary of the Seismoelec

Approach 1

We have investigated the effects of permeability and porosity on the
seismoelectric conversion using both experimental measurements and
theoretical analysis.

We measured the seismoelectric conversion using 28 rock sample samples
with porosities in the range 9.91% - 16.3% and four artificial sandstones with
constant porosity equal to 23.8%.

We have also developed and implemented the capillary bundle model to
calculate the seismoelectric coupling coefficient as a function of porosity,
permeability and frequency theoretically.

Experimental and theoretical analyses show that both porosity and
permeability affect seismoelectric conversion and present a quantitative
dependence between permeability and the seismoelectric coupling.
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e Both experimental and theoretical analyses of seismoelectric coupling
indicate that seismoelectric conversion is stronger for high porosity rocks
across a wide frequency range.

But the effects of permeability on seismoelectric coupling are complex and
can be divided into two permeability regions where 4.05 x 10> m? (4.05 mD)
is the permeability demarcation point:

Approach 2

» below this permeability value (unconventional reservoirs), the
seismoelectric coupling enhances with the increase of permeability; and

» over this value (conventional reservoirs), the seismioelectric coupling
increases first and then decreases with the increase of permeability.

Summary of the Seismoelec
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e Dependency of the seismoelectric coupling on permeability is different for
different frequencies.

tric

» At low frequencies (1 kHz) both the natural and artificial samples show
that seismoelectric conversion is enhanced by increases in permeability,
with the greatest sensitivity in the lower frequency range.

» At higher frequencies (10-500 kHz), there is a great increase in
seismoelectric conversion with increasing permeability, but the
seismoelectric conversion reaches a peak and then declines rapidly,
especially at the higher frequencies.

Approach 3

e The quantitative relationship between permeability and the seismoelectric
coupling is dependent on the frequency and permeability range, based on this
guantitative relationship, the permeability can be inferred by the
seismoelectric conversion.

Summary of the Seismoelec
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AR

* Combinations of experimental approaches ...

o’

* Combination of experiment and modelling ...

AR

* Combination of frequencies ...

AR

* Combinations of different types of sample ...

... all allow more in-depth analysis of electro-
kinetic and seismo-electric phenomena

Combinations of Experie
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