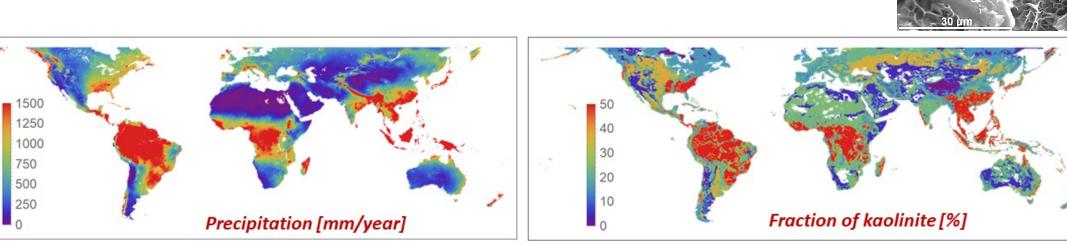
Effects of clay mineral type on soil hydro-mechanical properties – *a global perspective*

P. Lehmann¹, B. Leshchinsky², B. Mirus³, N. Lu⁴, S. Gupta¹ and D. Or¹

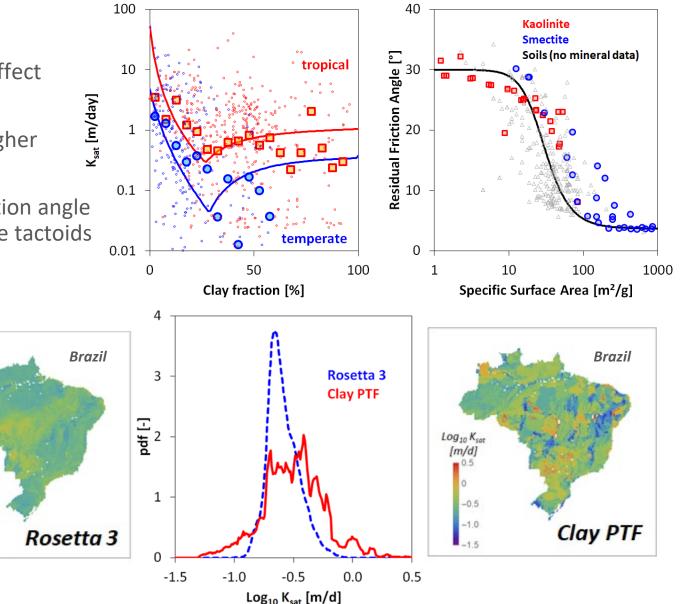

¹Soil and Terrestrial Environmental Physics, ETH Zurich, Zurich, Switzerland ³Landslides Hazards Program U.S. Geological Survey, Denver, USA ²College of Forestry, Oregon State University, Corvallis, USA ⁴Colorado School of Mines, Golden, USA

/silt

smect

Wilson et al.. 2004

- Clay minerals dominate soil colloidal fraction, surface area and hydro-mechanical properties
- Clay minerals exhibit a wide range of microstructures and hydration responses (with 'end members' represented by the ubiquitous kaolinite and smectite)
- Present pedotransfer functions (PTFS) consider soil clay fraction in parameterization of hydraulic and mechanical properties, yet the type of clay mineral is often ignored
- **Objective:** to capitalize on recent global maps of main clay minerals and spatial segregation of kaolinite (tropics) to develop PTFs informed by clay mineral type


Ito and Wagai, 2017

Preliminary results

- Difference in the microstructures of clay minerals affect various soil hydraulic parameters
- Tropical soils dominated by kaolinite clay exhibit higher saturated conductivity ${\rm K}_{\rm sat}$ and air entry value 1/ α
- Soils containing swelling smectite exhibit lower friction angle values than angular sand particles or stable kaolinite tactoids

500 km

- For tropical regions (*Brazil*), PTFs that ignore clay type yield narrow K_{sat} distributions (truncating high values)
- The underestimation of K_{sat} in LSM affects infiltration/runoff predictions
- Consideration of structure-forming vegetation would enhance differences with higher K_{sat} values for the tropics

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich