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Processes in the marginal ice zone (MIZ) are key to understanding

summer ice retreat

To model the MIZ, interactions
between the sea ice, atmosphere

I 1 and ocean must all be considered
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sea ice floes in models observations of sea ice floes
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Plot on right obtained from: Stern, Harry L., Axel J. Schweiger, Margaret Stark, Jinlun
Zhang, Michael Steele, and Byongjun Hwang. "Seasonal evolution of the sea-ice floe
size distribution in the Beaufort and Chukchi seas." Elem Sci Anth 6, no. 1 (2018).

Currently sea ice models
mostly assume a constant floe
Size.

Floe size is important for
several processes:

e Lateral melt volume

* |ce rheology

e Momentum transfer
between the sea ice,
atmosphere and ocean
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Observations constrain the likely shape of the

floe size distribution (FSD)
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Overview of this talk

* |Introduce two alternatives approaches to modelling the floe size
distribution (FSD): a fitted power law model and a prognostic model.

e Compare the impact of each modelling approach on key sea ice metrics
within the CICE (Los Alamos) sea ice model.

* Discuss the advantages and disadvantages of the different modelling
approaches.
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The fitted power law model imposes a power law onto the FSD
with a fixed exponent (Bateson et al. 2020)

The FSD model is adapted from an
implementation developed at the
National Oceanography Centre of
the UK (NOC). The model includes
a wave attenuation and floe
breakup model adapted from
waves-ice model of the Nansen
Environmental and Remote
Sensing Centre (NERSC) Norway,
details are given by Williams et al.
(201343, 2013b).



The prognostic model (Roach et al., 2018, 2019) uses an FSD that

does not make assumptions about the shape of the distribution

(a), floe area density distribution

* Model assigns sea ice area to specific _
floe size-thickness categories. S g
1e+03; \&\\ Oz;:\ ;f
» Several processes are parameterised: ¢ S A
o Lateral melt and growth. > TN ;
o Advection. g tes0 AN
o Welding together of floes.
o Wave break-up of floes. o . [ O
o Wave dependent floe formation. <3 August LD
o Brittle fracture (new). 10 180 1600

Floe diameter / m

Artificial ‘uptick’



Model setup for comparison

e CPOM CICE sea ice model based on CICE v 5.1.2 with extra physics
e CPOM CICE-ML-FSD is a version of CPOM CICE with:
- prognostic Mixed Layer (IVIL) [Petty et al., 2013]
- either power law FSD model [Bateson et al., 2020]
Amin = 5.38m, d,,5, = 1701 m, a = — 2.56 (a value determined from observations)
- or prognostic FSD model [Roach et al., 2018, 2019]
- reference run uses a fixed floe size of 300 m
 Stand-alone, atmosphere-forced runs over Arctic Ocean, NCEP-2 atmosphere
e ORCA1 grid
 Ocean spectra (significant wave period and height) from ERA-interim
 Ocean properties restored to MYO-WP4-PUMGLOBAL-REANALYSIS-PHYS-001-004 (MYQO)
reanalysis

* Spin up from 1980-1999, analysis from 2000-2016



Emergent distribution from prognostic model broadly follows a

power law but shows significant spatial and temporal variability

Plot of emergent perimeter density
distribution per unit sea ice area
(2000 — 2016 mean) from prognostic
model.

A power law (exponent determined
from observations) gives a reasonable
fit to the emergent distributions.

The perimeter density in the smaller
floe size categories decreases over
the melting season from March to
September.
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The WIPoFSD model has a larger impact on the sea ice mass-

balance than the prognostic model

power law FSD — reference prognostic FSD — reference
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Plots show the difference in the sea ice extent and volume for simulations with an FSD model compared to simulations without.



The power law FSD produces a higher increase in the cumulative
lateral melt than the prognostic FSD, particularly in the later melt

Season

power law FSD — reference prognostic FSD — reference
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Plots show the difference in the cumulative melt for simulations with and without an FSD model



The inclusion of either FSD model does not have a large impact on

the interannual variability of the sea ice extent or volume

Comparison of total sea ice extent
and volume in March and September
(to represent minimum and
maximum sea ice extent).

Both FSD models produce a reduction
in extent and volume but no clear
change in interannual variability.

The prognostic model produces a
lower sea ice extent in March but
higher in September compared to the
power law model.
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The prognostic model has a less homogeneous impact on the sea

ice extent and thickness compared to the WIPoFSD model

* Effective floe size = perimeter- power law FSD — reference prognostic FSD — reference
Weighted ave rage floe SiZE. . (a‘)'March (b) June - (c) September . (a‘)vMarch , (t:) June , . (c) September
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Advantages and disadvantages of the power law and prognostic

FSD models

Power law FSD model Prognostic FSD model

Simple model — easier to constrain mechanisms The impact of processes on the FSD can be

that cause the impacts. represented in a physically realistic manner.
Better fit to observations. Able to capture more variability in FSD processes

across the sea ice cover.
Assumption of a fixed power law not necessarily

valid across all floe sizes (see Horvat et al., 2019). Can only produce a physically realistic distribution

if all relevant processes are included in the model.
Evidence exists that the fitted exponent to the

power law varies through the year (Stern et al., Model is data intensive — standard setup requires
2018). 60 new floe size-thickness outputs.
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