N

-13‘; Universiteit Utrecht

7
‘ﬂAA!\\\ Faculty of Geosciences

Integrated field-agent based modelling
using the LUE scientific data base

Oliver Schmitz, Kor de Jong, Derek Karssenberg
Utrecht University, Faculty of Geosciences, Physical Geography, Utrecht, The Netherlands

Vienna, 4 May 2020

The LUE data model

Multi-paradigm modelling

Coupling fields and agents requires to represent:
e Continuous phenomena (e.g. plant biomass

* Varying set(s) of individuals (e g. deer)

* |nteractions

The LUE data model
Requirements

Capability to represent diverse environmental data, e.g.:
* Located in (3D) space and time

e Varying continuously through space and time

» Different spatial and temporal discretisations

* Linked data: relations, networks

Allow for an efficient implementation

The LUE data model
The conceptual data model

Phenomenon: Collection of related property-sets,
e.g. properties of individual Zebras

phenomenon

Property-set. Collection of properties sharing a
space/time domain

property-set

Domain: when and where something is, eqg.
Location of a Zebra through time

Property:. Location and variation of a characteristic property
through time and space

Value: e.g. body temperature of a Zebra domain

The LUE data model
The physical data model

The LUE model is implemented in HDF5:

* All model data in a single, portable file

 C++14 API and Python API (with NumPy support)
* Open format

* Open source, participation welcome:
- https://github.com/pcraster/lue/
- https://lue.readthedocs.io/en/latest/index.html

Modelling environment

LUE embedded in a Python framework

Providing high level access to the LUE database

Extending Map Algebra concept to the agent-based
modelling

Access using the Python dot notation, e.q.:
phenomenon.propertyset.property = ...

Case study

Food environments

Objective: to identify the influence of social network and

existence of grocery stores on individual’s propensity on
healthy food

Applied to the municipality of Utrecht, NL

L ocations of ~40000 households, V N
~400 stores ol

Case study

Simplified model description

d x;
dt — (Xi)_l_g(xgroup)

x; propensity of individual (-1,1)

t time (years)

Xgoup AVErage propensity in group (spatial or social network)
f, g functions

Case study

Excerpt of a model script

def initial(self):
self.sim = LueMemory(self.nrTimeSteps())

Spatial domain of frontdoor loca

locations = Points(mobile=False)

locations.read('houses.csv') MOdeI

Phenomenon

self.household = self.sim.add_phenomenon('household', locations.nr_items) . o B - .
Initialisation

Property set

seif.household.add_property_set(’frontdoor', locations, fame.TimeDomain.dynamic) phase deflnlng
]

Properties

self.household.frontdoor.add_property('propensity') h f
self.household.frontdoor.add_property('default_propensity') t e StrUCtu re 0 a
self.household.frontdoor.add_property('alpha')

self.household.frontdoor.add_property('beta') phenOI I lenon and
self.household.frontdoor.add_property('gamma')
self.household.frontdoor.add_property('buffersize')

self.household.frontdoor.add_property('social_neighbours', dtype=numpy.int64) a_SSIQnIng Inltlal

self.household.frontdoor.add_property('neighboured_foodstores', dtype=numpy.intl6)

self.household.frontdoor.alpha = .15 Values

self.household.frontdoor.beta =
self.household.frontdoor.gamma = .0
self.household.frontdoor.buffersize = 500

self.household.frontdoor.default_propensity = 0.4

Assign initial propensity around -@.17

self.household.frontdoor.propensity = uniform(self.household.frontdoor, -0.18, -8.16)
Assign Watz-Strogatz network

self.household.frontdoor.social_neighbours = neighbour_network(self.household.nr_objects, 2, 0.1, seed)

Case study

Excerpt of a model script

For each time step
def dynamic(self):
print('dynamic {}'.format(self.currentTimeStep()))
Operation performed for each agent in a phenomenon

terml = self.household. frontdoor alpha * (self.household.frontdoor.default_propensity - self.household.frontdoor.propensity)

Effect of neighboured stores

Calculate the potential default wvalue for households in case no food is in buffer

total_average = property_average(self.foodstore.frontdoor.propensity)

neighboured_store = network_average(self.household.frontdoor.neighboured_foodstores, self.foodstore.frontdoor.propensity, total_average)
term2 = self.household.frontdoor.beta * (neighboured_store ¥ (1.0 - abs(self.household.frontdoor.propensity)))

Effect of social network

social_neighbours = network_average(self.household.frontdoor.social_neighbours, self.household.frontdoor.propensity)

term3 = self.household.frontdoor.gamma * (social_neighbours_prop * (1.0 - abs(self.household.frontdoor.propensity)))

self.household.frontdoor.propensity += self.timestep * (terml + term2 + term3)

Process description executed for each time step. Each of the
algebraic operations or network operations is performed on every
object in a phenomenon

Case study

Exemplary output

Household propensities over time:

M ”])H b ” ”yl I “‘Y I ""

Neighbourhood effect of food outlets Effects of social neighbourhood included

Case study

Exemplary output

The animation (uploaded separately) shows the changes
of household propensities for the municipality of Utrecht.

Left: spatial neighbourhood effects of stores
Centre: higher influence of social networks
Right: mixed influence of stores and social network

nnnnnnnnnnnnnnnnn 125

uuuuuuuuuuuu

ssssss

https://surfdrive.surf.nl/files/index.php/s/IMgKOn6WQeeatWyK

Modelling environment

LUE embedded in a Python framework

Framework Is work In progress

More operations need to be added, including
spatial operations by binding PCRaster operations

Further information

LUE, framework, PCRaster

Oliver Schmitz, o.schmitz@uu.nl

http://pcraster.geo.uu.nl/

https://github.com/pcraster/lue

https://github.com/pcraster/fame

https://github.com/pcraster

de Bakker, M. P., de Jong, K., Schmitz, O., & Karssenberg, D. (2017). Design and demonstration of a

data model to integrate agent-based and field-based modelling. Environmental Modelling & Software,
89, 172-189. https://doi.org/10.1016/j.envsoft.2016.11.016

de Jong, K., & Karssenberg, D. (2019). A physical data model for spatio-temporal objects.
Environmental Modelling & Software. https://doi.org/10.1016/j.envsoft.2019.104553

mailto:o.schmitz@uu.nl
http://pcraster.geo.uu.nl/
https://github.com/pcraster/lue
https://github.com/pcraster/fame
https://github.com/pcraster

