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Natural springs’ protection and probabilistic risk assessment under 

uncertain conditions

1. Pilot site characterization

CREMONA aquifer is a heavily exploited site

in the alluvial Po plain (Northern Italy), its

natural high-quality water springs are the

main supply to agriculture and a key

environmental driver.

The analysis of available sedimentological

information allows identifying a set of 5 main

geomaterials (facies/classes) which constitute

the geological makeup of the system.
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3. Groundwater flow modeling

5. Global Sensitivity Analysis

Three-dimensional groundwater flow 

model under steady state regime. 

The flow domain size is 23 km (E-W 

direction) × 48 km (N-S direction) ×
475 m (depth). Each cell has dimension 

100 m × 200 m × 5 m. 

The diverse averaging strategies 

significantly affect the spatial distribution 

of Y. The domain is (on average) more 

permeable and less heterogeneous when 

the arithmetic rather than the geometric 

mean operator is employed.

Meteorological station

Well

Spring

Hydrometric level station

Geological stratigraphy

SECT. 1

SECT. 2

5 km

low hydraulic conductivity lithotypes

borehols

37%

5%33%

15%

10%

1 2 3 4 5

Facies volumetric 

fraction

2. Conceptual models
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We parameterize the conductivity field following two different conceptual schemes:
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4. Uncertain parameters

Parameter
Short 

name
Description

Lower 

bound 

Upper 

bound
Unit

p1 k1

Clay and silt 

conductivity
10-8 10-5 m/s

p2 k2

Fine and silty sand 

conductivity
10-7 10-4 m/s

p3 k3

Gravel, sand and gravel 

conductivity
10-4 10-2 m/s

p4 k4

Compact conglomerate 

conductivity
10-6 10-3 m/s

p5 k5

Fractured conglomerate 

conductivity
10-3 10-1 m/s

p6 p6

Total flow rate from 

northern boundary
4.83 14.47 m3/s

p7 p7 River stage 0.0 3.0 m

Uncertain parameters are associated with (i) 5 hydraulic conductivities 

and (ii) 2 selected boundary conditions
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We analyze the impact of 

the uncertainty in the 

conceptual model and 

model parameters on 

model outputs (hydraulic 

heads at 39 target wells) by 

way of three GSA 

methodologies: (a) 

derivative-based, (Morris)  

(b) variance-based 

(Sobol’) (c) moment 

based (AMAM indices, 

Dell’Oca et al., 2017).
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Our results show that: (i) hydraulic head for all conceptual models are significantly affected by the 

uncertainty of k3 and/or k5,(ii) impact of k2 and/or k4 is negligible and (iii) impact of BCs depends on 

the model. 

We find that the sensitivity measures considered convey different yet complementary information. The

choice of the conceptual model employed to characterize the lithological reconstruction of the aquifer

affects the degree of influence that uncertain parameters can have on modeling results.
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What is the probability of spring discharge reduction due to increasing exploitation 

of the aquifer?

We evaluate this probability, stemming from the combination of the various 

sources of uncertainty illustrated above, through a Fault Tree Analyses. 
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6. Probabilistic Risk Assessment

OR

AND

OR

AND

SF

YA

YB ,TR j jh h


