
INSTITUT FÜR WELTRAUMFORSCHUNG

IWF.OEAW.AC.AT

Daniil Korovinskiy (1), Andrey Divin (2), Vladimir Semenov (2), 

Nikolai Erkaev (2,3,4), and Stefan Kiehas (1)

(1) IWF, ÖAW, Graz, Austria

(2) Saint Petersburg State University, St. Petersburg, Russia

(3) Institute of Computational Modelling, FRC "Krasnoyarsk  

Science Center" SBRAS, Krasnoyarsk, Russia

(4) Siberian Federal University, Krasnoyarsk, Russia

GRAD-SHAFRANOV RECONSTRUCTION 

OF THE IN-PLANE MAGNETIC FIELD POTENTIAL 

IN THE X-POINT VICINITY: 

BOUNDARY-LAYER APPROXIMATION

1

This work is funded by Austrian Science Fund (FWF): P27012-N27 

and Russian Science Foundation (RSF): 18-47-05001



INSTITUT FÜR WELTRAUMFORSCHUNG

IWF.OEAW.AC.AT

1. EMHD approximation.

2. The Grad-Shafranov equation for magnetic potential.

3. Boundary layer approximation.

4. Benchmark reconstruction of the magnetic potential by means of 

different techniques, resting upon PIC simulations data.

5. Comparison of the results in terms of relative error of reconstruction.

6. Conclusion: the approximate solution of the Grad-Shafranov equation 

(solution of the well-posed problem) is more accurate than its 

“exact” solution (solution of the ill-posed problem).

OUTLINE
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Sketch of the magnetic configuration and adopted reference system

THE REFERENCE SYSTEM
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Here, numbers 1, 2, and 3 mark MHD, HMHD, and EMHD regions, respectively, 

and 4 and 5 show external and internal EDR.

After [Korovinskiy et al. (2011), JGR 116, A05219]
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The reconstruction problem for steady symmetrical two-dimensional (2d)

magnetic reconnection in the X-point vicinity is addressed in terms of the

EMHD approximation,

EMHD APPROXIMATION
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Here, all notations are conventional and all quantities are normalized.

Normalization constants: 𝑚𝑖 , 𝑑𝑖 =
𝑐

𝜔𝑖
, 𝑛0, 𝐵0, 𝑉𝐴 =

𝐵0

4𝜋𝑛0𝑚𝑖
, 𝐸𝐴 =

1

𝑐
𝐵0𝑉𝐴, 𝑃0 =

𝐵0
2

4𝜋
.

𝑚𝑒 𝐕𝑒 ∙ ∇ 𝐕𝑒 = −
1

𝑛𝑒
∇ ∙ ෠𝑃𝑒 − 𝐄 + 𝐕𝑒 × 𝐁 ,

∇ × 𝐁 = −𝑛𝑒𝐕𝑒 ,

∇ × 𝐄 = 0,

∇ ∙ 𝐁 = 0,

∇ ∙ 𝐄 =
𝑐2

𝑉𝐴
2 (𝑛𝑖 − 𝑛𝑒),

∇ ∙ (𝑛𝑖,𝑒𝐕𝑖,𝑒) = 0.
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Introducing the magnetic potential 𝐴(𝑥, 𝑧) of the in-plane magnetic field,

𝐁⊥ = [∇𝐴 × 𝐞𝑦], and substituting this definition to the Ampère’s law, we 

derive the equation for 𝐴:

EQUATION FOR MAGNETIC POTENTIAL
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where ∆⊥= Τ𝜕2 𝜕𝑥2 + Τ𝜕2 𝜕𝑧2 stands for the in-plane Laplace operator.

Thus, we arrive at the two-dimensional Poisson’s equation. 

∆⊥𝐴 = 𝑛𝑒 𝑥, 𝑧 𝑉𝑒𝑦 𝑥, 𝑧 , (I)

Next, one can perform the variables transformation 𝑥, 𝑧 → 𝐴, 𝐵𝑦 , where 

𝐵𝑦 appears to be a stream function of the electron in-plane flow. 

In a simplest case 𝑛𝑒 = 𝑐𝑜𝑛𝑠𝑡, 𝑇𝑒 = 𝑐𝑜𝑛𝑠𝑡 the right-hand side of Eq.(I)

turns to the function on 𝐴 only with 𝑉𝑒𝑦 = 𝑉𝑒𝑦(𝐴) [Uzdensky and Kulsrud

(2006), PoP 13, 062305; Korovinskiy et al. (2008), JGR 113, A04205].

In a more general case 𝑛𝑒 = 𝑛𝑒 𝐴 , 𝑇𝑒 = 𝑇𝑒(𝐴) , one gets the representation

𝑉𝑒𝑦 = 𝑉𝑒𝑦1 𝐴 + 𝑉𝑒𝑦2 𝐴 𝐵𝑦
2, hence the right-hand side of Eq.(I) acquires also

the 2nd term, depending on both variables [Korovinskiy et al. (2011), JGR 116,

A05219; Sonnerup et al. (2016), JGR 121, 4279].



INSTITUT FÜR WELTRAUMFORSCHUNG

IWF.OEAW.AC.AT

So, assuming 𝑛𝑒 = 𝑛𝑒 𝐴 , 𝑇𝑒 = 𝑇𝑒(𝐴) , we have

∆⊥𝐴 =
𝑑𝐿(𝐴)

𝑑𝐴
+ 𝑂 𝐴, 𝐵𝑦

2 ,

where

𝐿 𝐴 = න
−∝

𝐴

𝑛𝑒 𝐴′ 𝑉𝑒𝑦1 𝐴′ 𝑑𝐴′.

In a small vicinity of the X-point, where 𝐵𝑦 = 0 due to the symmetry

condition, one can neglect the second term in the right-hand side of Eq.(II),

arriving at the well-known Grad-Shafranov equation.

The quantity 𝑉𝑒𝑦1 is the major part of 𝑉𝑒𝑦 ; it is calculated from the

boundary conditions, fixed as magnetoplasma parameters at some curve መ𝑆
(the satellite trajectory), as well as 𝑛𝑒(𝐴) and 𝐴 itself,

GRAD-SHAFRANOV EQUATION
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(II)

(III)

𝐴 = න
መ𝑆

𝐵𝑧𝑑𝑥 − 𝐵𝑥𝑑𝑧 +𝐴0,

𝑉𝑒𝑦1 𝐴 = 𝑉𝑒𝑦 +
𝐵𝑦
2

2𝑛𝑒

𝑑

𝑑𝐴
ln(𝑛𝑒)

መ𝑆

.

(IV)
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Small reconnection rate, which we denote 𝜀, dictates stretched 

magnetoplasma configuration, where 
𝜕

𝜕𝑥
~𝜀

𝜕

𝜕𝑧
, hence

∆⊥𝐴 =
𝜕2𝐴

𝜕𝑧2
+ 𝑂 𝜀2 .

Neglecting the term ~𝜀2, we obtain the boundary layer (BL) approximation for 

the Grad-Shafranov equation for magnetic potential,

𝜕2𝐴

𝜕𝑧2
=
𝑑𝐿(𝐴)

𝑑𝐴
.

Multiplying Eq. (V) by Τ𝜕𝐴 𝜕𝑧 and integrating it over 𝑧, we derive the solution

𝑧 𝐴 = 𝑧0 ±
1

2
න
𝐴0

𝐴 𝑑𝐴′

𝐿 𝐴′ − 𝐿 𝐴0 + Τ𝐵𝑥0
2 2

where subscript 0 marks the initial values (values at the satellite trajectory).

BOUNDARY LAYER APPROXIMATION
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(VI)

(V)
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So, the reconstruction problem and its reductions are formulated as follows,

𝜕2𝐴

𝜕𝑥2
+
𝜕2𝐴

𝜕𝑧2
= 𝑛𝑒 𝑥, 𝑧 V𝑒𝑦 𝑥, 𝑧

𝜕2𝐴

𝜕𝑥2
+
𝜕2𝐴

𝜕𝑧2
= 𝑛𝑒 𝐴 V𝑒𝑦 𝐴

𝜕2𝐴

𝜕𝑧2
=
𝑑𝐿(𝐴)

𝑑𝐴

𝑧 𝐴 = 𝑧0 ±
1

2
න
𝐴0

𝐴 𝑑𝐴′

𝐿 𝐴′ − 𝐿 𝐴0 + Τ𝐵𝑥0
2 2

Notably, despite Eq. 4 is derived by integrating Eq. 3, these two equations  
are not identical from the computational point of view.

THE RECONSTRUCTION PROBLEM
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(1) Poisson

(2) G.-Sh.

(3) BL G.-Sh.

(4) BL G.-Sh.
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Magnetic configuration, modeling the steady symmetrical reconnection, is obtained

by means of two-dimensional PIC simulations with Τ𝑚𝑖 𝑚𝑒 = 256. White curves

show the magnetic separatrices, and red line imitates the satellite trajectory.

TEST CONFIGURATION

9



INSTITUT FÜR WELTRAUMFORSCHUNG

IWF.OEAW.AC.AT

TEST FUNCTIONS: 𝑛𝑒(𝐴)
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Test functions are obtained by merging two parts, 𝑓 𝐴 = 𝑓1(𝐴 < 0) + 𝑓2(𝐴 > 0),
where 𝑓1 is evaluated at the cross-section 𝑥 = 0, 𝑧 > 0 , and 𝑓2 at 𝑧 = 0, 𝑥 > 0 .
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Since at the 𝑥 axis 𝐵𝑦 = 0 due to the symmetry condition, we have

𝑉𝑒𝑦1 𝐴 = 𝑉𝑒𝑦 𝐴 , 𝑉𝑒𝑦2 = 0 , hence Eq. (II) turns to the G.-Sh. Eq. (2) exactly.

TEST FUNCTIONS: 𝑉𝑒𝑦(𝐴)
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TEST FUNCTIONS: 𝐿(𝐴)
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RECONSTRUCTION: POISSON (1)
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RECONSTRUCTION: GRAD-SHAFRANOV (2)
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RECONSTRUCTION: BL G.-SH. (3)
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RECONSTRUCTION: BL G.-SH. (4)
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RECONSTRUCTION: ERROR
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RECONSTRUCTION ERROR: SUMMARY
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1. The reconstruction error is growing rather fast with a distance from the 
initial profile, amounting to ≈ 2% at 𝑧 = 0.2𝑑𝑖 and ≈ 10% at 𝑧 = 0.4𝑑𝑖.

2. Solution of the test problem, Eq.(1), where the right-hand side of the

Poisson’s equation is taken from PIC simulations data at each step of

integration, shows also the growing error, though several times less.

Inaccuracy of this solution has three sources:

a) inaccuracy of the numerical calculation of the derivative 
𝜕2𝐴

𝜕𝑥2
; 

b) artificial smoothing (Savitzky-Golay filter); 

c) nonideal stationary state of the magnetic configuration. 

3. The worst accuracy is demonstrated by the “exact” solution of the Grad-

Shafranov equation (2), where the dependence on 𝐵𝑦 in the right-hand side

of the Poisson’s equation is assumed to vanish.

4. The boundary layer approximation (Eq.3,4) improves the solution; at large

distances the best reconstruction accuracy is achieved by the solution of the

BL G.-Sh. problem, cast in a form of the 1st order ODE (Eq.4). Notably, Eq. 3

and 4 do not contain the term Τ𝜕2𝐴 𝜕𝑥2, hence no artificial smoothing is

applied.
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RECONSTRUCTION ERROR SOURCES
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Τ𝜕2𝐴 𝜕𝑥2

smoothing

unsteady configuration

assumption that 𝑛𝑒 and 𝑇𝑒
do not depend on 𝐵𝑦,

hence Poisson → G.-Sh.

boundary layer approximation, the term 
Τ𝜕2𝐴 𝜕𝑥2 is omitted, no extra smoothing

the 1st order ODE with the 

cumulative quantity 𝐿(𝐴)
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SUMMARY AND CONCLUSIONS

The reconstruction problem for steady symmetrical 2d magnetic reconnection is

addressed in a frame of EMHD approximation, yielding the Poisson’s equation for the

magnetic potential 𝐴(𝑥, 𝑧) of the in-plane magnetic field, ∆𝐴 = 𝑛𝑒𝑉𝑒𝑦.

Performing the variables transformation (𝑥, 𝑧) → (𝐴, 𝐵𝑦), and assuming 𝑛𝑒 = 𝑛𝑒 𝐴

and 𝑇𝑒 = 𝑇𝑒 𝐴 , the Poisson’s equation turns to the Grad-Shafranov equation with

small extra term ~𝑂(𝐵𝑦
2). In our particular case this term does vanish. With

boundary conditions fixed at unclosed curve, the problem is ill-posed.

Since reconnection rate 𝜀 ≪ 1 , one can make use of the boundary layer

approximation, assuming ∆𝐴 = Τ𝜕2𝐴 𝜕𝑧2 + 𝑂(𝜀2) and neglecting the term ~𝜀2.

This way, the equation for magnetic potential turns to the 2nd order ODE, which can

be integrated one time analytically. The problem is well-posed.

The benchmark reconstruction of 𝐴(𝑥, 𝑧), obtained from PIC simulations, has shown

that the main contribution for inaccuracy arises from replacing the Poisson’s

equation by the Grad-Shafranov one. This simplification imposes a severe restriction

on the reachable cross-size of the reconstructed region, 𝑧𝑚𝑎𝑥~0.5𝑑𝑖. At the same

time, the longitudinal size may reach the value of several 𝑑𝑖.
Boundary layer approximation improves the accuracy, since the problem becomes 

well-posed; at large distances 1st order ODE form is preferable.


