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Context and stakes

Valley of Grenoble viewed from the 
measurement site – February 2019

Transport and storage of pollutants in valleys
Whiteman D (2000)
Largeron Y, Staquet C (2016)

Parameterization of katabatic flows and turbulence in 
meteorological models
 Blein S (2016) 

Katabatic jet: gravity flow that develops in 
stably stratified conditions, due to a 
negative surface energy balance (often 
during nighttime)
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Outlines

2012 November field experiment

* Presentation of the field campaign

* Buoyancy effect on turbulence kinetic energy (TKE)

* Buoyancy effect on turbulent shear stress u’w’ 

2019 February field experiment

* Presentation of the field campaign

* Improvements from the 2012 experiment

- Tethered balloon above the mast and background stratification

- Time-resolved measurements close to the ground (f=1250Hz)

- Measurement of entrainment / detrainment in mean velocity profiles
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2012 November field experiment

Belledonne mountain range (French Alps)

Slope angle α = 21° (streamline)

Anticyclonic conditions
Brünt-Väisälä frequency N ~ 0.02Hz

Reynolds decomposition with τ = 2 min:

                     a ( t ) = a  +  a’ ( t )4 3D sonic anemometers (10-20 Hz)
1 2D sonic anemometer (0.5Hz)
1 thermo-hygrometer
1 infrared-thermometer

6.5 m high mast
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Pure katabatic event : 2012 November 19th (1915-1945 Local Time)
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1. Grisogono et al. (2001), J Atmos Sci 58(21):3349–3354     /      2. Brun et al. (2017), J Atmos Sci 74(12):4047–4073
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6

Buoyancy effect on turbulence kinetic energy

Turbulence kinetic energy (TKE)                                      Buoyancy term in the TKE budget

e=0.5 (u' 2+v '2+w ' 2) PB
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Overview of the results from other field experiments
Limit between production and consumption of TKE by buoyancy

u ' θ '
w ' θ '

=cot(α)

3. Oldroyd et al. (2016), Boundary-Layer Meteorol 161(3):405–416

3

Charrondiere et al. (2020), Boundary-Layer Meteorol (Under review)
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Buoyancy effect on turbulent shear stress |          |
Buoyancy term in the turbulent shear stress budget

PB
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Overview of the results from other field experiments

Limit between production and consumption of u’w’ by buoyancy

u ' θ '
w ' θ '

=−tan (α)

Charrondiere et al. (2020), Boundary-Layer Meteorol (Under review)
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1. Ill-defined external conditions

2. Lack of information in the inner 
layer of the jet, close to the ground

3. Streamline divergence/convergence

1. Thethered balloon
up to 300m

2. Cobra pitot-type probe: 
3D velocity components 
for measurements close to 
the ground

            

3. 6 sonic anemometers to measure 
entrainment/detrainment in the lower 
part of the jet

       Weaknesses of the 2012 dataset             Design of a new field experiment

https://www.turbulentflow.com.au/
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A new field campaign from winter 2019

Meteorological mast: 

- Atmospheric pressure (CS100)

- Shortwave and longwave radiation 
fluxes (CNR1)

- Humidity and temperature (CS215) 

- Distance sensor (SR50)

- 11 wind speed levels
    * 7  3D sonic anemometers (20Hz)
    * 4  2D sonic anemometers (0.5Hz)

- 17 temperature levels (20Hz)
    * 10 thermocouples
    * 7 sonic anemometers

10m

2019 February 12-28th

Snow cover:

* Weak surface 
roughness

* Snow melting: 
vertical variation of measu-
rement levels 

(dz = 50cm during the campaign) 
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2019 dataset : improvements from the 2012 dataset

1. Tethered balloon:
* Measurements above the mast: 10-50m
* Background temperature stratification: up to 300m 1770m

1165m

1. Grisogono et al. (2001), J Atmos Sci 58(21):3349–3354     /      2. Brun et al. (2017), J Atmos Sci 74(12):4047–4073

1,2

February 24th (5AM) 

February 15th (10AM) 



13

2. Cobra pitot-type probe : 3D velocity components
* f = 1250 Hz
* Level measurements : 4cm to 35cm

2019 dataset : improvements from the 2012 dataset

Streamwise velocity spectra with a well-
developped inertial subrange

Turbulent shear stress variability along zn 
close to the ground 

4. Denby and Smeets (2000), Journal of applied Meteorology 39(9):1601–1612

4u ' w ' (zn)=u ' w ' 0−sin(α)
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3. Slope-normal entrainment/detrainment
* Streamline inclination up to 9° with respect to the lower measurement level
* Slope-normal velocity W > 0 in the lower part of the outer shear layer

2019 dataset : improvements from the 2012 dataset

Variability of 
measurement height due to 

melting/packing of the 
snow
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Take home messages

2012 field experiment: buoyancy effects over steep slopes 

- TKE production in the outer layer of the jet

- TKE consumption enhanced in the inner layer

- Consumption of turbulent shear stress (except around the maximum wind speed height)

→ Design of flux Richardson for TKE and stress Richardson for u’w’

2019 field experiment: to dig further with these data

- Variability of turbulent shear stress close to the ground

- Presence of slope-normal velocity in the jet: entrainment/detrainment

- Energy spectra distribution close to the ground 

- Buoyancy effects to reinforce conclusion from 2012 November dataset

- Full budget of TKE and turbulent shear stress:

* Buoyancy production/consumption

* Mechanical shear production/consumption

* Turbulent transport

* Vertical advection

* Dissipation

Charrondiere et al. (2020), Boundary-Layer Meteorol (Under review) Design of the 2019 field 
experiment to complete 
the 2012 dataset
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