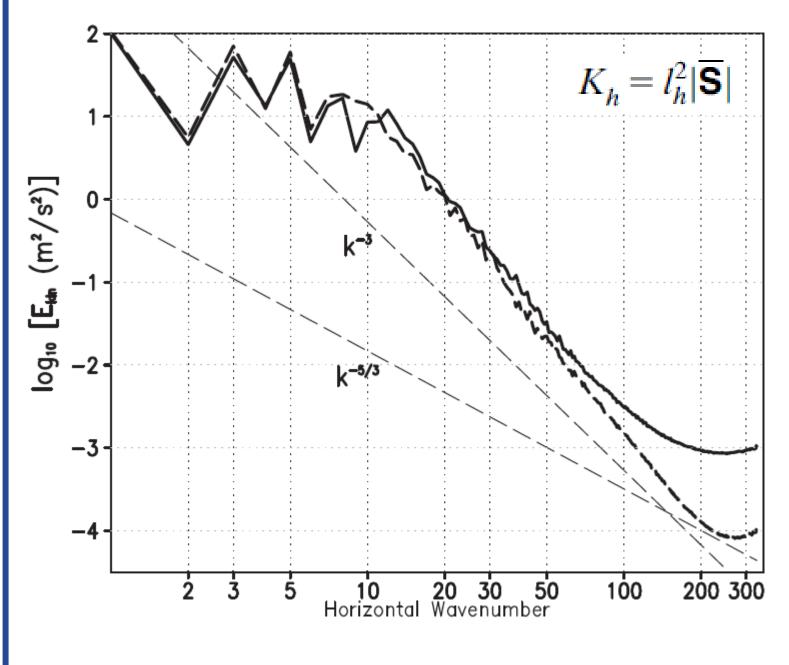
1. Motivation

Kinetic energy spectra in our high-resolution ($n_{cut}=330$) CGM: Classic Smagorinsky model vs. Dynamic Smagorinsky model (DSM)



LEIBNIZ-INSTITU

ATMOSPHÄREN

FÜR

Left: Classic <u>Smagorinsky model</u> $(l_h = const.)$ without higherorder terms exhibits accumulation of energy

Right: <u>DSM</u> allows for *continuing -5/3 slope* without higher-order terms

Question: How can we explain the difference between Smagorinsky model and DSM? Can we use the answer to improve parameterizations?

Answer (Oberlack, 1997): Classic Smagorinsky model cannot capture near-wall scaling laws and violates scale invariance

Consider mathematical consistencies of parameterizations

- Represented by <u>mathematical properties</u> (e.g. invariances) for set of equations
- Examples: Invariances with respect to time, translation, rotation, scaling ...

General formulation (Schaefer-Rolffs *et al.*, 2015)

• For a symmetry transformation of an equation of motion of a scalar *q* the mathematical structure must be retained under transformation $\partial_t a + (\mathbf{v} \cdot \nabla) a = \mathcal{F}_a(t, x_i, a, b_1, b_2, \dots)$

$$\Rightarrow \ \partial_{t^*}a^* + (\mathbf{v}^* \cdot \nabla^*)a^* = \mathcal{F}_a(t^*, x_i^*, a^*, b_i^*)$$

Application of Kolmogorov-like scaling

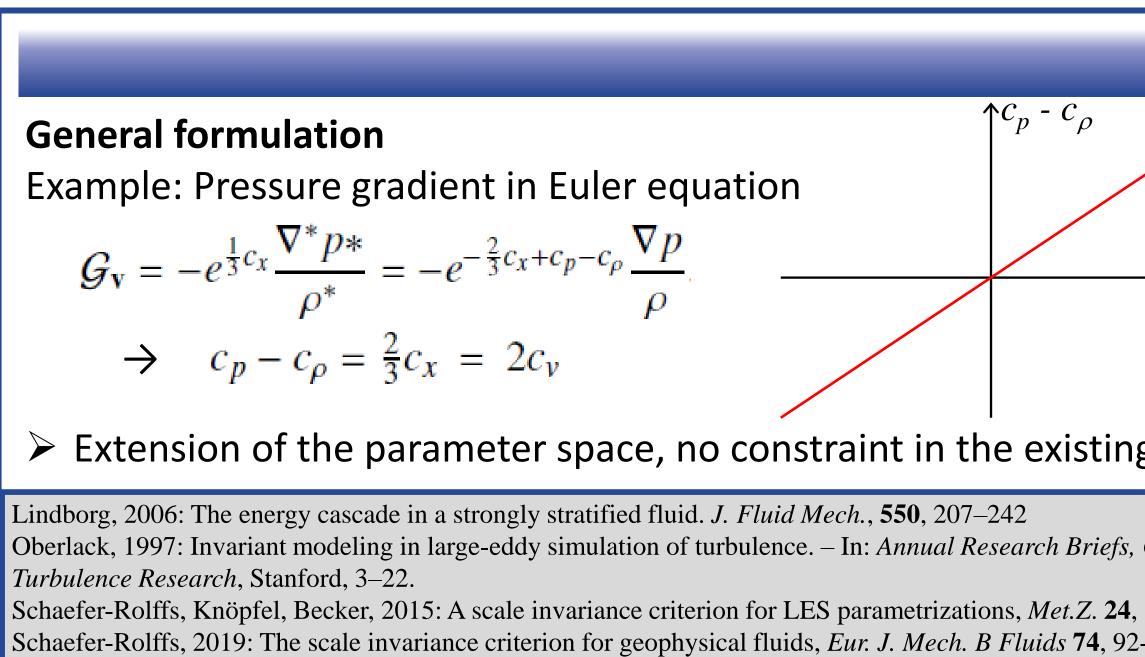
$$t^* = e^{\frac{2}{3}c_x}t, \ x_i^* = e^{c_x}x_i, \ v_i^* = e^{\frac{1}{3}c_x}v_i, \ a^* = e^{c_a}a, \ b_l^* = e^{c_a}a$$

> A criterion (in the red box) can be derived as follows $\partial_{a}a^{*} \perp (\mathbf{v}^{*}, \nabla^{*})a^{*} - \mathcal{F}(t^{*}, \mathbf{v}^{*}, a^{*}, b^{*})$

$$e^{c_a - c_t} \partial_t a + e^{c_a - c_t} (\mathbf{v} \cdot \nabla) a = \mathcal{F}_a(e^{c_t} t, e^{c_x} x_i, e^{c_a} a, e^{c_b} b_l)$$

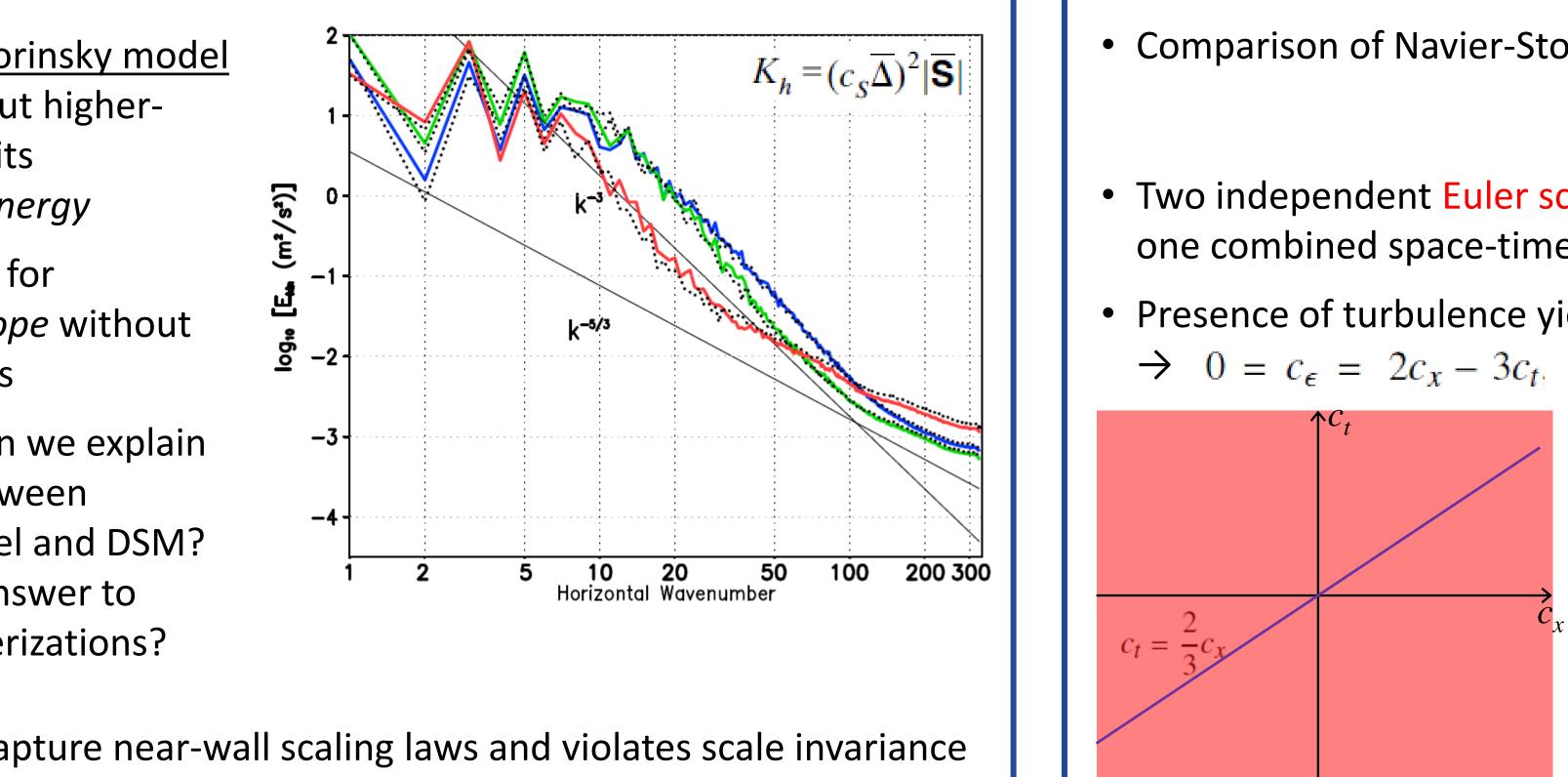
$$\partial_t a + (\mathbf{v} \cdot \nabla) a = \mathbf{\mathcal{F}}_a(e^{\frac{2}{3}c_x - c_a} \mathcal{F}_a(e^{\frac{2}{3}c_x} t, e^{c_x} x_i, e^{c_a} a, e^{c_b} b_l) \stackrel{!}{=} \mathcal{F}_a(t, x_i, a, b_l)$$

• It can be used for each term individually, because scaling is linear

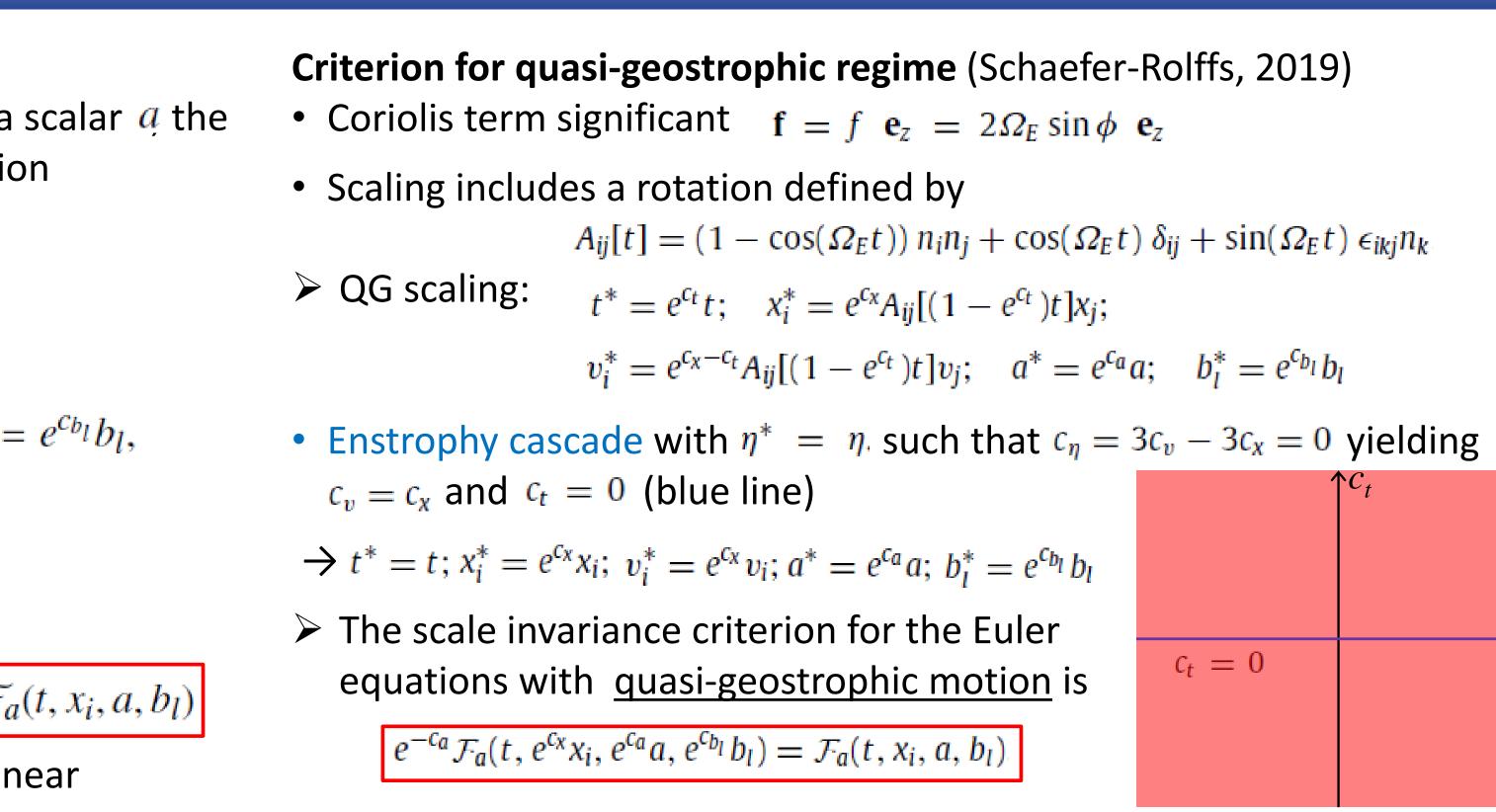


A Scale Invariance Criterion for Geophysical Fluids

Urs Schaefer-Rolffs



3. Scale invariance criterion



		4. Application	S
$\overrightarrow{C}_{x}, C_{t}$	Applications I C_t $C_t = 0$ $C_t = c_x = 0$	The <u>classic Smagorinsky</u> parameterization adds a new constraint $c_x = 0$ (green line) to the Euler equations	$c_t = \frac{2}{3}c_x$
	QG regime	Breaking of scale invariance	anelas
ng space	C_t $C_t = 0$ C_x	The <u>DSM</u> does not add any constraint (denoted by green area) to the scaling	$c_t = \frac{2}{3}e_x$
4 , 3-14, 2015 92-98, 2019		Scale invariance preserved	

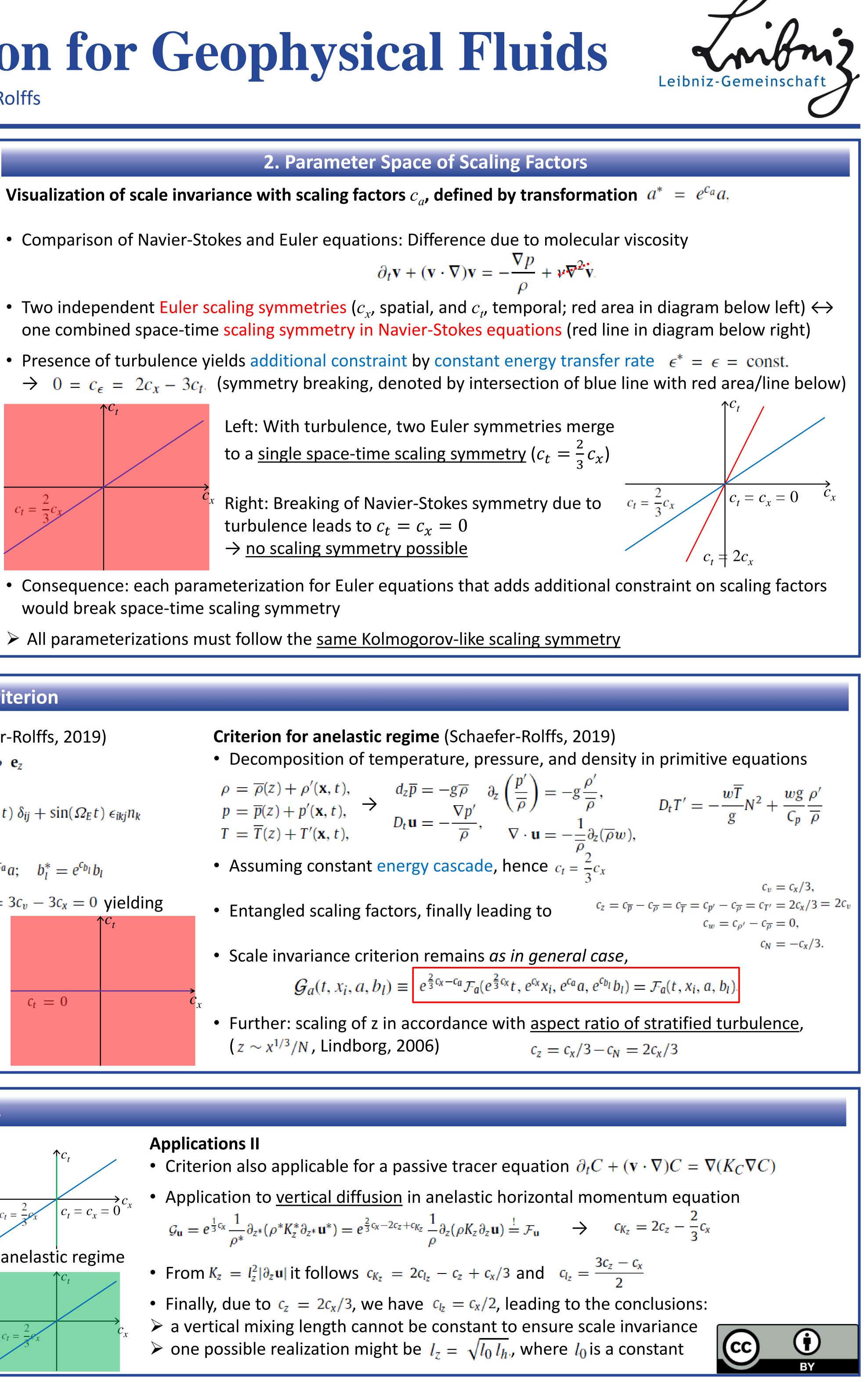
• Comparison of Navier-Stokes and Euler equations: Difference due to molecular viscosity

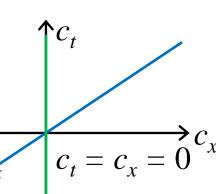
turbulence leads to $c_t = c_{\chi} = 0$ \rightarrow no scaling symmetry possible

would break space-time scaling symmetry

> All parameterizations must follow the <u>same Kolmogorov-like scaling symmetry</u>

$\rho = \overline{\rho}(z) + \rho'(\mathbf{x}, t),$	\rightarrow	$d_{z}\overline{p} = -g\overline{\rho} \partial_{z}\left(\frac{p'}{\overline{\rho}}\right) = -\nabla p'$
$p = \overline{p}(z) + p'(\mathbf{x}, t),$		$\nabla p' \langle \rho \rangle$
$T = \overline{T}(z) + T'(\mathbf{x}, t),$		$D_t \mathbf{u} = - \overline{\rho}, \nabla \cdot \mathbf{u} = -$





Applications II

$$\mathcal{G}_{\mathbf{u}} = e^{\frac{1}{3}c_{x}} \frac{1}{\rho^{*}} \partial_{z^{*}} (\rho^{*} K_{z}^{*} \partial_{z^{*}} \mathbf{u}^{*}) = e^{\frac{2}{3}c_{x} - 2c_{z} + c_{K_{z}}} \frac{1}{\rho} \partial_{z} (\rho K_{z} \partial_{z} \mathbf{u}) \stackrel{!}{=} \mathcal{F}_{\mathbf{u}}$$

astic regime

