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Kinetic energy spectra in our high-resolution (n_ ,=330) CGM: Classic Smagorinsky model vs. Dynamic Smagorinsky Visualization of scale invariance with scaling factors c , defined by transformation a* = ¢“a.
model (DSM)

Left: Classic Smagorinsky model * Comparison of Navier-Stokes and Euler equations: Difference due to molecular viscosity
([, = const.) without higher-
order terms exhibits

accumulation of energy

Right: DSM allows for
continuing -5/3 slope without
higher-order terms

Vp .
0V + (v-V)v = _YP + vy
Je,
* Two independent Euler scaling symmetries (c,, spatial, and ¢, temporal; red area in diagram below left) <>
one combined space-time scaling symmetry in Navier-Stokes equations (red line in diagram below right)

* Presence of turbulence yields additional constraint by constant energy transfer rate €" = € = const.
- 0 =c¢. = 2¢c, — 3¢;. (symmetry breaking, denoted by intersection of blue line with red area/line below)
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NN Quesfuon. How can we explain Left: With turbulence, two Euler symmetries merge
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turbulence leadstoc¢; = ¢, =0
Answer (Oberlack, 1997): Classic Smagorinsky model cannot capture near-wall scaling laws and violates scale invariance ~ no scaling symmetry possible c, = 2¢,
» Consider mathematical consistencies of parameterizations * Consequence: each parameterization for Euler equations that adds additional constraint on scaling factors
* Represented by mathematical properties (e.g. invariances) for set of equations would break space-time scaling symmetry

 Examples: Invariances with respect to time, translation, rotation, scaling ... » All parameterizations must follow the same Kolmogorov-like scaling symmetry

3. Scale Invariance criterion

General formulation (Schaefer-Rolffs et al., 2015) Criterion for quasi-geostrophic regime (Schaefer-Rolffs, 2019) Criterion for anelastic regime (Schaefer-Rolffs, 2019)
* For a symmetry transformation of an equation of motion of a scalar @ the * Coriolis term significant f = f e, = 22 sing e, * Decomposition of temperature, pressure, and density in primitive equations
mathematical st(;u_cture m‘;st be?;etamed ;mollier transformation * Scaling includes a rotation defined by p = pz)+ p'(x t), dzp = —8p 9 (p:) = g2 wl ., wgp'
i+ (v-V)a=Fut xj,a,b1,09,...) Ajjlt] = (1 — cos(§2gt)) ninj + cos(§2gt) 8jj + SIN($2et) €y p = Pp(z)+p'(x,t), Vp' P P DeT” = _EN G P
S Opa + (Vv -V)a" = Fu(t", x;.a".by) > QG scaling: T =T(z) + T'(x. t) Dru = 7 V.u= —laz[ﬁur} ’
‘ Bt =et X = oAyl — e )tx;; 7 p ’
. 2
 Application of Kolmogorov-like scaling v = e*TUA[(1—et)tly;:  a* =e“a;  bf = ey * Assuming constant energy cascade, hence ¢, = 3¢
2. ” _ * l A Co # ] . . Co = Cx/3,
f* = e, X7 = €S Vi = eIy, A = efa, by = by, * Enstrophy cascade with n* = n.such that ¢, = 3¢, — 3¢ =0 yielding + Entangled scaling factors, finally leading to G = Cp— Gy = Cr = Cy — Cp = O = 26¢/3.= 2Cy
o , c, =¢ and ¢ = 0 (blue line) [ ' Cw =Cp — G =0.
» A criterion (in the red box) can be derived as follows N = —Co/3.
L Cy .. . X 4. Lk . . . . . . .
dpa* + (V" - VIa* = Folt* . X!, a* b)) <> " =t X = e"xi; v = e%vj; a* = e“q; b} = e Scale invariance criterion remains as in general case,
2. 2
¢ G a + (v - V)a = Fo(e't. e xi. e%a, ¢ by) > The scale invariance criterion for the Euler — . Ga(l. xj,a.by) =| e3% 7O Fg(e3%t, e%x;, e@a, eMby) = Fq(t, Xi, a, by),
. [ Ze—c, et Crv. Car oCh L ﬂ equations with quasi-geostrophic motion is F X _ . . , -
Ora + (V- V)a = e3="0F (371, e xj. eta, e by) = Folt, x;. a. by) :  Further: scaling of z in accordance with aspect ratio of stratified turbulence,
. . e~ 0 F(t, e%x;, ea, eby) = F4(t, x;, a, b 1/3 :
* It can be used for each term individually, because scaling is linear o ' ) = Falt, i, 0 o) (z ~x'°/N, Lindborg, 2006) C; = C/3 —Cy = 26¢/3

4. Applications

. 1Cy - C : : -
General formulation b7 Applications | The classic Smagorinsky e Applications I
. . . . . t . . . . .
Example: Pressure gradient in Euler equation 16 parameterization adds a new * Criterion also applicable for a passive tracer equation J;C + (v-V)C = V(KcVCO)
¥ . . .
Gy = _E%E‘_rv P* _ _ %e+ep—c, Vp . . constraint ¢y = 0 ?gree” line) * Application to vertical diffusion in anelastic horizontal momentum equation
ok 0 C,, C, «=0 |c =¢, =0 tothe Euler equations o 1 1 | 2
. . 2 . ; : : : Gy = e3™ _*'az* (p*KZdz¢u™) = e3x % % — 3, (pK,d,u) = F, - (k. = 2C; — E{.'x
> Cp—Cp=35Cx = 26 _ » Breaking of scale invariance | . p p
QG regime anelastic regime L 3, — ¢
, . . NG rc * FromK; = [Z|d.u|it follows c. = 2c. — ¢ + /3 and ¢, =
» Extension of the parameter space, no constraint in the existing space t The DSM does not add any t 2
Lindborg, 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207-242 constraint (denoted by green ° 'ma”y; due to ; = 2'53:!{3; we have Cp = EH"Z: |eadmg to the conclusmns:
Oberlack, 1997: Invariant modeling in large-eddy simulation of turbulence. — In: Annual Research Briefs, Center for G =0 >C . >C > g vertical mixing Iength cannot be constant to ensure scale invariance
Turbulence Research, Stanford, 3-22. X area) to the Scalmg X _ ] ] _ ] ®
Schaefer-Rolffs, Knopfel, Becker, 2015: A scale invariance criterion for LES parametrizations, Met.Z. 24, 3-14, 2015 . . » one p055|ble realization mlght be ;’E = 1,.".-’[,[ "h-r where f.;]. IS @ constant
Schaefer-Rolffs, 2019: The scale invariance criterion for geophysical fluids, Eur. J. Mech. B Fluids 74, 92-98, 2019 » Scale invariance preserved BY




