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INTRODUCTION

Motivation:
I Advective trapping occurs when solute enters low velocity zones in

heterogeneous porous media.
I Classical approaches combine slow advection and diffusion into a dispersion

coefficient or a single memory function.
Objective
I We investigate advective trapping in homogeneous media with low

permeability circular inclusions.
I We build an upscaled model in the continuous time random walk framework.
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FLOW PROPERTIES

Mean velocity in the matrix is
proportional to the area occupied by
the inclusions χ.
Velocity in the inclusions is not
constant. The mean velocity in the
inclusions vi is log-normally
distributed and proportional to χ.

FIGURE 1: Streamlines in a medium
with randomly placed inclusions.
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FIGURE 2: Velocity distribution inside the
inclusions (top) and mean velocity
distribution (bottom).c© AUTHORS. ALL RIGHTS RESERVED



TRANSPORT PROPERTIES

The breakthrough curves reflect the
trapping of particles in the low
permeability inclusions.
The trapping rate follows a Poisson
distribution.

FIGURE 3: Transport through a medium
with randomly placed inclusions.
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FIGURE 4: Breakthrough curves at increasing
distance from the inlet and advection -
dispersion equation solution fit (top). The
number of trapping events follows a Poisson
distribution (bottom).c© AUTHORS. ALL RIGHTS RESERVED



UPSCALED CONTINUOUS RANDOM TIME WALK MODEL I

We consider advective-dispersive particle transitions in the mobile matrix

dx(s) = vmatrixds +
√

2Dmdsξ(s),

with s the mobile time spend outside the inclusions, Dm is diffusion (from
Eames & Bush, 1999) and ξ(s) a Gaussian white noise.
During the mobile time s particles encounter ns inclusions. The clock time t(s)
after the mobile time s has passed is given by

t(s) = s +
ns

∑
i=1

τi

where ns is Poisson distributed and the trapping times τi depend on the
distance (random uniform) and the velocity at the visited inclusion (random
log-normal)
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UPSCALED TRANSPORT MODEL RESULTS
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FIGURE 5: Breakthrough curves at increasing distance from the inlet (dots) and upscaled
CTRW model results 8solid line).
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SUMMARY & CONCLUSIONS

Purely advective transport was here considered as a limiting case for
advective-diffusive transport.
The shape of breakthrough the curves cannot be predicted with a
macrodispersion coefficient.
We developed a CTRW model developed parameterized by measurable
medium properties: the trapping rate (Poisson distributed), the velocity in
the matrix (a function of χ) and the mean velocity distribution inside the
inclusions (log-normal).
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