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A) Introduction

Quantifying mass-wasting is vital for understanding
landscape evolution / improving hazard management.

There is a need to understand how extreme events and
human activity perturb background mass-wasting rates.

Here, a 30-year inventory of mass-wasting events (figure
1) is used to quantify mass-wasting magnitudes in Nepal
due to the monsoon, extreme events and road building.
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Figure 1: Location of study region and > 15,000 monsoon-triggerred and road associated mass-
wasting events mapped across 30 monsoon seasons from LandSat Imagery

B) Methods

1. Calculate yearly total and scar mass-wasting volumes from mapped
polygons using empirical relationships (Larsen et al., 2010; Marc et al., 2018).

2. Obtain relationships between mass-wasting volume and monsoon-strength
for all pre-earthquake years (figure 2). This defines the “background” rate
of monsoon -triggered mass-wasting across the study region.

3. Derive a monsoon-strength normalised rate of mass-wasting by calculating
the ratio of the actual mass-wasting mapped in a given year to the mass-
wasting predicted based on the total rainfall relationships from 2 (figure 3).

Figure 2: Empirical relationships (R2 = 0.6
- 0.78) between mass-wasting volume and
PERSIANN CDR precipitation estimates for
pre-Gorkha earthquake years (1988 - 2014)
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E) Impacts of road buiding

C) Results As the 2016 - 2018 perturbation

is only evident in the uncorrected Pl vy
rates, it is likely due to reactivations E s =
(e.g. photo 1) or road-building Ehy” .
(e.g. photo 2).

Figure 3: Monsoon strength-normalised rate of monsoon-
triggered mass-wasting following the method of Marc et al. (2015).
Note, in each case, rates were obtained for all events (uncorrected) and all events

minus road-associated and reactivated events (corrected). There is a large increase in road

-associated mass-wasting in 2008
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1. Most years fall within +/- one SD of the background ‘normal’ and so are explainable by g_ﬁ

the monsoon-strength alone.
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2. Any years with normalised rates perturbed above the monsoon-triggered

background rate must be partially attributable to another
extreme event or human activity.

Figure 5: Proportion of inventory composed of reactivations and
road-associated mass-wasting

3. The magnitude of each perturbation above the
background can be used to quantify the
relative magnitudes of , , ,
each perturbation F) Implications and Conclusions
Implication 1: Our new empirical
relationships between monsoon-
strength and mass-wasting could
assist quantitative assessments of
potential future changes.

Extreme storms caused mass-
wasting equivalent to 4.3 average
MOoNsOOoON-seasons .

The Gorkha earthquake caused
coseismic and monsoon-triggered
mass-equivalent to 23 and 2.1
average monsoon-seasons.

The 1993 and 2002 perturbations were caused by cloud o i 8 s T
outburst storms that deposited over 540 and 300 mm of B L ol Eaea Implication 2: Our results show that
outburst storms th A g s extreme events can cause transient
AR et A . mass-wasting perturbations. This
These two perturbations caused mass-wasting equivalent P SN e S highlights the need for time-
to 4.3 average background monsoon-seasons. AP T oi o e dependent mass-wasting
e g SRR susceptibility models.

Road construction caused mass-
wasting equivalent to 3.6 average
Monsoon-seasons.

In 2015, the Gorkha earthquake caused monsoon-triggered
mass-wasting equivalent to 2.1 average monsoon-seasons.
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Photo 1 (left): Small debris flow of reactivated 2015 et S ames it v B Geomorphology, 301, 121-138 (2018)
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