TECHNISCHE UNIVERSITAT

Bundesamt für Eich-und

Preparations for the ITRF2020 at TU Wien

Anna Zessner-Spitzenberg ${ }^{1}$, David Mayer ${ }^{2}$, Andreas Hellerschmied ${ }^{2}$, Markus Mikschi' ${ }^{1}$, and Sigrid Böhm ${ }^{1}$
${ }^{1}$ TU Wien, Higher Geodesy, Department of Geodesy and Geoinformation, Austria ${ }^{2}$ Bundesamt fïr Eich- und Vermessungswesen, Vienna, Austria
(c)

Goals

- Contribution to the ITRF2020 with Very Long Baseline Interferometry (VLBI) sessions analysed from the Vienna VLBI Group

■ Computing our own TRF

- Analyzing the effect of non-tidal Atomspheric Pressure Loading (APL) and antenna Gravitational Deformation on VLBI results

Methods

■ using a selected list of VLBI sessions from the last 40 years ($\backsim 6000$ sessions)
■ new implemented models :

- Galactic Aberration
- Antenna Gravitational Deformation
- EOP High Frequency Model
- New IERS poletide model (2018)
- computing a global solution with the selected VLBI sessions

■ analysing the session with the Vienna VLBI and Satellite Software (VieVS)

Interim Results - TRF estimated with VieVS

- 6085 S/X VLBI sessions from 1979-2019
- \# Stations: 102

■ \# Sources: 4877

Station distribution included in the TRF. Stations in blue are included in the datum definition.

Interim Results - EOP Estimates

Time series of EOP estimates w.r.t. C04 computed from a backward solution from the TRF generated with VieVS.

Interim Results - APL

The figure on the left depicts the weighted baseline length repeatability (blr) of two solutions, one with non-tidal APL (blue) and one without (red). The difference of these solutions is shown in the figure on the right. It is calculated by blr $r_{A P L}$ - blr noAPL. Further, the mean value of the differences is illustrated in orange.
(c)

Outlook

■ comparing our TRF to the ITRF2014 and other TRFs

- analysing the effects of non-tidal APL and antenna Gravitational Deformation on the TRF

