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• European Flood Awareness 

system (EFAS) based on 

runoff ensemble forecasts

• Operational forecasts of 

flood levels for Europe

• 1-10 days probabilistic 

forecasts

• National HydroMet services 

as partners

• Part of Copernicus 

Emergency Management 

Service (EU)

Context
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Post-processing of ensemble forecasts

• Usually recommended

• Should reduce biases and dispersion 

errors (ensemble variance too large/too 

small)

• Here: Using Ensemble Model Output 

Statistics (EMOS) on continental scale 

hydrological ensembles (LISFLOOD), 

based on different meteorological forecasts 

(ensemble from ECMWF and COSMO, 

deterministic from ECWMF and DWD)

• NOTE: We’re comparing with simulated 

runoff (based on observed precipitation), 

not runoff observations
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Calibrating with Ensemble Model Output 
Statistics (EMOS-method)

• Not all forecasters are equally good, best prediction as weighted mean

• Variance as function of ensemble variance - correct dispersion errors

• Minimizing Continuous Ranked Probability Score (CRPS) – which is a 

combination of prediction error and dispersion error (variance too high or too 

low – there should be a reasonable relationship between prediction variance 

and prediction error)

• CRPS-errors in blue below. The two panels to the left have correct forecasts, 

the two panels to the right with prediction errors. Panels 1 and 3 have low 

prediction variance, panels 2 and 4 have large prediction variance. 



5

• Simulated runoff data from observed 

precipitation and from weather forecasts 

from more than 600 stations in Europe for 

2015-2017

• Using Continuous Ranked Probability Skill 

Score (CRPSS) as a measure of the 

improvement from post-processing. 

• CRPSS compares CRPS-errors for raw 

ensemble and post-processed ensemble. 

• CRPSS is above 0 when the post-

processed distribution is better than the 

raw ensemble (up to 1). 

• Calibrating for each year separately. Post-

processing ensembles from 2017 with 

calibrated parameters from 2016 as 

validation.

Calibration and validation



6

• Calibration and validation 

results from EMOS

• Only some improvement 

for short lead times

• Only variance inflation 

parameter fitted in the 

lowest panels – similar 

results

CRPSS-results
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PIT-diagram of raw ensemble and post-
processed distribution – 1 day lead time

• Probability integral transform 

diagrams is a check on how 

the observations plot in the 

predictive distribution of the 

ensemble. It should ideally 

have a uniform distribution.

• The raw ensemble is strongly 

underdispersed (bottom)

• PIT-diagrams of post-

processed distribution are 

more uniform, validation 

almost as good as calibration

• CRPSS around 0.1 (~ 10% 

improvement)

• CRPSS = 0.11 • CRPSS = 0.11
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PIT-diagram of raw ensemble and post-
processed distribution – 7 days lead time

• CRPSS = 0.01 • CRPSS = 0.01

• The PIT diagram of the raw

ensemble is almost trimodal

(bottom)

• The variance post-processing 

is not able to reduce the 

underdispersion without 

simultanously increasing the 

peak in the middle – best fit is 

to leave the variance as it is.

• CRPSS is close to zero

• The ensemble for 7 days lead

time is mainly from ECMWF, so 

mixing methods as Bayesian

Model Averaging (BMA) would 

probably not improve.
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Weights change from year to year

• There is little consistency in the calibrated weights for each forecast 

between the different years

• The best set of weights for the calibration year is not necessarily the best 

set for the validation year
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Analysing NSE

• We computed Nash-Sutcliffe

efficiency for each forecast, each

station and for each year.

• The figure shows which forecast 

gave highest NSE for each station 

and each year for lead times 1, 5 

and 10 days.

• Some spatial patterns visible for 

individual years, but not between

years
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Conclusions

• Post-processing helps for lead time 1-3 days in our case, but not for the 

remaining days

• Bias correction seems unnecessary for this application. Maybe also as a 

result of using simulated runoff for comparison (this is done as EFAS is 

focusing on return periods, not on the runoff itself). However, there could still 

have been a bias between meteorological observations and forecasts.

• There are no forecasts that consistently give better results for different 

years. We have tried shorter calibration/verification periods, with same 

result.

• The variance is underestimated by the model for short lead times. Post-

processing can help in this case.

• The ensembles for long lead times have a multi-modal distribution, which 

cannot be easily fixed by the solution we have tested here.  
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EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Eu Science Hub

Keep in touch
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Thank you
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