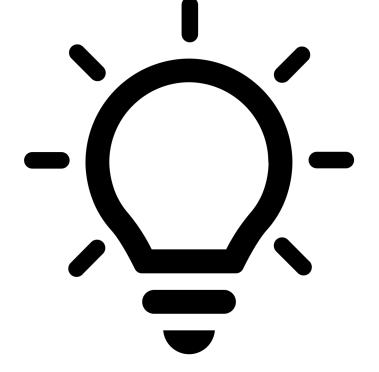


Purification of Organic Compounds Using Microsublimation for ¹⁴C Analysis

Christian Heusser^{1,2} Caroline Welte^{1,3} Bodo Hattendorf² Daniel Montluçon¹ Detlef Günther² Timothy Ian Eglinton¹

General Assembly 2020

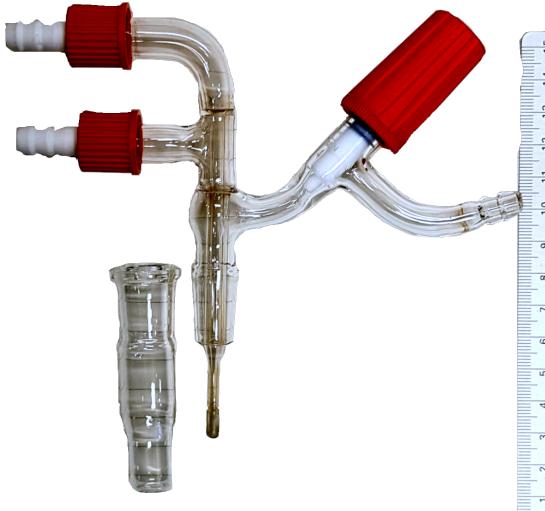
¹ETH Zurich, Geological Institute, D-ERDW, Zurich, Switzerland ²ETH Zurich, Laboratory of Inorganic Chemistry, D-CHAB, Zurich, Switzerland ³ETH Zurich, Laboratory of Ion Beam Physics, D-PHYS, Zurich, Switzerland


Goal and Idea

 Removal of contaminants introduced by prep-GC purification for small organic samples for ¹⁴C dating

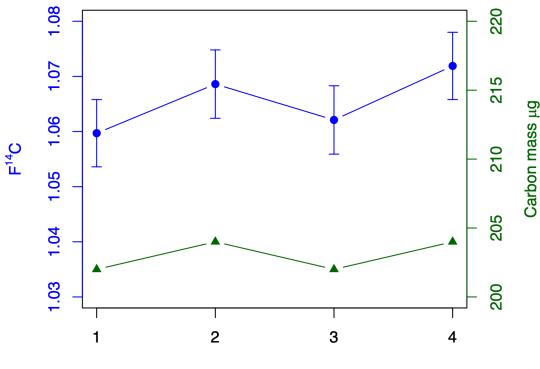
THzürich

General Assembly 2020


- Sublimation is a simple, easy and wellknown purification method in chemistry
- Challenge: small samples (down to 50 μg)

Microsublimation apparatus

- Custom design \bullet
- GC vial holder \bullet
- Purified compound collected directly on • metal cap at bottom of the cooling finger
- Grease-free, evacuable, heat treatable \bullet



Compounds and Reliability

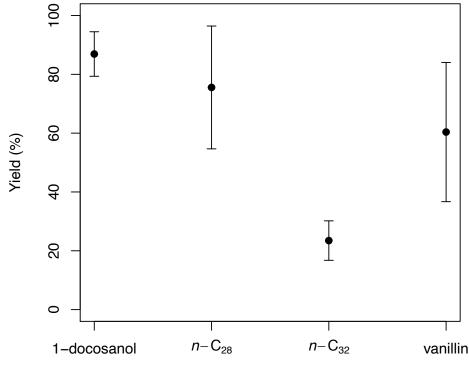
THzürich

General Assembly 2020

- Fatty alcohols:
 1-tetradecanol, 1-octadecanol,
 1-docosanol
- Long chain alkanes: n-octacosane, n-dotriacontane
- Lignin phenols: vanillin
- Reliable, reproducible F¹⁴C for all compounds tested, but observable presence of constant contamination in small samples

Measurement no.

Reproducibility of microsublimation experiments shown for a series of 4 consecutive 1-octadecanol samples.



EGU General 2020

Yields

High yields required, especially for low sample sizes

- High yields for 1-docosanol, *n*-octacosane (*n*-C₂₈)
- Moderate yields for vanillin
 - Optimization of sublimation conditions
- Low yields for *n*-dotriacontane (*n*-C₃₂)
 - Optimization of sublimation conditions

Compound

Future plans

- Investigate applicability with other substances
- Optimize conditions