Changes in radiative forcing due to clear-cutting in Sweden

Iris Mužić¹, Patrik Vestin¹, Anders Lindroth¹, Meelis Mölder¹, Tobias Biermann^{1,2}, Michal Heliasz^{1,2}, Janne Rinne¹

¹Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

²Centre for Environmental and Climate Research, Lund University, Lund, Sweden

Based on available data, clear-cutting in southern and central Sweden had a warming effect on climate while in northern Sweden clear-cutting had a net cooling effect.

FOREST FEEDBACKS TO CLIMATE

- Forests store CO₂ and thereby reduce the atmospheric concentration → cooling
- Forests have a low albedo and thereby absorb more incoming radiation -> warming

AIM

to determine the net climatic effect of clear-cutting in Sweden by comparing radiative forcing by albedo change and radiative forcing by CO₂ release due to clear-cutting in Sweden

HYPOTHESIS

 high-latitude clear-cutting can reduce climate warming

STUDY SITES

 Norway spruce and Scots pine forests

Svartberget forest and Degerö mire (64°N)

Norunda forest and clear-cut (60°N)

Hyltemossa forest and clear-cut (56°N)

RESULTS

- latitude increase:
 radiative forcing by albedo change 1
 radiative forcing by CO₂ release 1
- small differences in **summer albedo** in Sweden have higher contribution to radiative forcing by albedo change than the winter albedo

DATA

- CO₂ release
 difference in the
 aboveground carbon stock
 of the standing biomass
 between forest and clear-cut sites
- albedo change

incoming and reflected shortwave radiation from net radiometers in forest (installed by ICOS Sweden) and neighbouring clear-cut sites (installed by LU)

FUTURE PERSPECTIVE

- albedo effect has an essential role in future forest management strategies
- more data is required on radiative and CO₂ fluxes during the whole rotation cycle of managed forests

EGU2020-885

