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 (U-Th)/He ages on apatite and REE analyses
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     Stuctural map modified from Taillefer et al. (2017) showing three sampling transects highlighted 
in this poster TET, GAL and ST. In grey, samples from previous studies (Maurel et al., 2008; Milesi et 
al., 2019); in white, new samples of this study (Milesi et al., 2020 submitted). 
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Thermochronology and REE analyses as new tools to track thermal anomaly and fluid flow 
along a crustal scale fault (Têt fault, French Pyrenees)
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The Têt fault is a crustal scale major fault in the eastern Pyrenees that displays about 30 hot springs along its surface trace with temperatures between 29°C and 73°C. The regional process of fluid circulation at depth has 
previously been highlighted by thermal numerical modelling supported by hydrochemical analyses and tectonic study (Taillefer et al., 2017). Numerical modelling suggests the presence of a strong subsurface anomaly of 
temperature along-fault (locally > 90°C/km), governed by topography-driven meteoric fluid upflow through the fault damage zone (Taillefer et al., 2018). On the basis of this modelling, we focused our (U-Th)/He 
thermochronological study of apatite on 30 samples collected close and between two hot spring clusters in both the hanging wall and the footwall of the Têt fault, along the most important modelled thermal anomaly 
(Figure on the right). More than 100 apatites were dated in combination with 63 REE analyses to constrain the intensity and geometry of the geothermal anomally along the Têt fault. Sampling was realised along three main 
sections perpendicular to the fault and involved mainly gneiss lithologies inside and outside the fault damage zone DZ.

     Samples outside the 
Damage Zone (DZ): 
A) Typical augen gneiss;
B) Undeformed Mont-Louis 
granite C) Variscan mylonite. 
Samples from the outer DZ: 
D, E) Silica-filled fractures 
close to CAR7 sample;  
F) Fracture filled with a 
micro-breccia near ST hot 
spring cluster. 
Samples from the inner DZ: 
G) High fracturation in the 
footwall near the Têt fault 
on ST profile; H) 
Heterogeneously fracturated 
and alterated gneiss showing 
lenses less affected by 
hydrothermal alteration; 
I) Close view on apatite 
within a gneiss lens (enlarge-
-ment of H); J, K) Cataclasite 
and protocataclasite next to 
the Têt fault.

3D synthetic block diagram of the Têt 
valley showing the surface distribution of 
thermal anomalies in the fault footwall 
revealed by AHe dating and REE analyses 
(additional data are in Milesi et al., 2020 
submitted)

    On the letft, AHe ages as a function of distance from the Têt fault.  The grey area correponds to the total Têt 
fault Damage Zone (DZ). The inner DZ (in yellow) has been only delineated for the TET and GAL profiles according 
to Milesi et al. (2019). Note the double width of the DZ on ST profile consistent with a larger fault network in this 
area (Mayolle et al., 2019). On the right, chondrite normalised REE patterns (Sun and Mc Donough, 1969) of dated 
apatite grains within the footwall. The purple areas cover the REE patterns of apatites taken outside the DZ. 
For TET profile only, samples from the inner DZ (green) and outer DZ (red) are distinguished 
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Purple area:  undisturbed REE patterns 
of apatites from outside DZ

In the hanging wall (HW) AHe ages are between 43 and 18 Ma with more dispersionand ageing close to the 
fault. In the footwall (FW), very young AHe ages (< 5Ma) and wide age dispersion are recorded in the DZ of 
the TET profile. The larger age spread is observed close to the fault (inner DZ) in agreement with the HW data.
Similar age dispersion but less younging are recorded by apatites within the DZ of ST profile. By contrast AHe 
ages of DZ samples on GAL profile (free of hydrothermal activity) are concordant at 10.3 ± 0.2 Ma.Compared 
to the undisturbed REE patterns of apatites from the outside DZ samples (purple area), rejuvenated apatite 
grains from the TET profile DZ have mainly homogeneously depleted REE patterns that are interpreted to 
result from hydrothermal circulation (Harlov et al., 2005). REE patterns from ST profile show a similar 
but less intense depletion of both LREE and HREE compared to the TET profile. 
REE patterns of GAL samples are characteristic of medium grade metapelitic
rocks (Henrichs et al., 2018) with a lower Eu anomaly compared to the 
previous augen gneiss. No REE depletion was observed within the DZ 
in agreement with the lack of evidence of hydrothermal activity and 
good reproducibility of AHe ages.This work was funded by THERMOFAULT, a project supported by the Region Occitanie (France) involving 

TLS Geothermics (main sponsor), Géosciences Montpellier and the TelluS Program of CNRS/INSU
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More details on Solid Earth journal website :
https://www.solid-earth-discuss.net/se-2020-54/

Hanging wall of the Têt fault

Footwall of 
the Têt fault

This study shows that AHe thermochronology combined with REE analysis is an efficient 
tool to track recent geothermal activity along a dormant fault. Along the Têt fault, we 
identified two main, spatially very restricted (1 or 2 km square), hydrothermal clusters 
into the DZ (TET and ST) of the Têt fault footwall where apatites exhibit variable rejuve-
-nation and age scattering depending on the hot spring temperature but also on other 
parameters such as topography, permeability of the host rocks and fault zone, fracture 
mineralization or tectonic background around the fault. As fluid flow through fractured 
rocks is a highly heterogeneous process, even at the thin section-scale, variable 4He loss 
by fluid advection can account for AHe age dispersion. Helium trapping can be also a 
source of apatite ageing in the very fault contact. In between these two hot spring 
clusters,the AHe and REE data suggest that no significant hydrothermal circulation took 
place within the DZ in the last 10 Ma, in contrast to what the numerical models show. 
Therefore, the combination of AHe dating and REE analyses can constrain the geometry 
and intensity of a geothermal anomaly along a fault . As an exploration tool, the use of 
(U-Th)/He thermochronology appears very complementary to other tools as, for example, 
hydrothermal fluid chemical analyses, fluid circulation numerical simulations or electrical 
methods. Moreover, it is a cost-effective tool as it allows constraining such models 
without the need for drilling.


