Online | 4-8 May 2020

D64 – EGU2020-8858

ADCP with onboard GPS for streamflow velocity measurement usable for physical models calibration

Why using ADCP to get velocity measurements ?

Hydro sedimentary modelling

- Sediments blocked in reservoirs & loss of storage capacity,
- Difficulties to ensure sedimentary or ecological continuity,
- Siltation of nuclear plant cold springs ...

Hydraulic modelling

- Bank erosion downstream of a dam,
- Flow problems through grids,
- Clogging problems (fry, jellyfish...) of nuclear plant cold springs ...

Spatial mapping of velocities

- Marine or fluvial tidal wave,
- Spatial mapping of velocities for sizing of structures (dike, dam...).

1/ Map, model and reproduce the behaviour of rivers or facilities
2/ With specific conditions applied to the model, understand the evolution of flow, sediments, or fish paths...
3/ Find solutions to meet environmental, producing and safety challenges

How to get velocity measurements ?

ADCP measurement (Acoustic Doppler Current Profiler)

- Velocity profiler working with Doppler effect (double Doppler effect),
- Measuring velocity and depth under the device.

• $\Delta F = F_1 - F_0$

- F₀ : frequency of the signal emitted by the transducer
 - **F**₁ : frequency of the signal received by the transducer
- c : wave speed (depending on water temperature and salinity) ⇒ importance of temperature measurement and stability

Additional measurements : Vsurface

- LSPIV measurement (Large Scale Particle Image Velocimetry)
 - Surface velocity measurement : complementary to ADCP,
 - Non-intrusive measurement (fixed camera, aerial drone),
 - May require injection of tracers (corn chips...).

- SVR measurement (Surface Velocity Radar)
 - Surface velocity measurement,
 - Non-intrusive measurement (mainly from bridges).

Obvious links between velocity and discharge measurements (tools, devices, softwares)...

A few differences ...

Qdischarge

- Mainly « organized » flow on cross sections
- 6 transects required and averaged
- Q conservative, navigation accuracy « not very important »
- GPS used if bad bottomtrack signal (moving bed, algae...)
 - □ HDOP < 4
 - DGPS (quality 2) acceptable
 - Number of satellites > 5

Optional compass (except if moving bed)

- Mainly « disorganized » flow
- 1 transect may be enough, if not several averaged transects
- Local velocity field (magnitude and orientation) and good navigation accuracy required
- GPS used if bad bottomtrack signal and for geolocation (GGA & VTG)
 - □ HDOP < 0.8
 - DGPS sometimes not sufficient, RTK (quality 3) required
 - Number of satellites> 12
- Some additional softwares
 - VMT (velocity representation), Hypack (navigation and bathymetry), QGis (cartography)
- In marine environment, salinity profile required
- Calibrated compass and magnetic declination (if GPS used for velocity computation)

GPS « World » (GNSS*) important...

Geolocation must be as precise as possible!

- Existing satellite systems (GPS, GLONASS, BEIDOU, Galileo) must be complemented with **performance enhancements** system that deliver real-time corrections to improve accuracy
- Ground reference stations continuously measure the error and send a correction signal to users :
- With GSM connexion, it is called RTK « Network »
- With a reference installed by the user before each measurement, it is called RTK « classical ».
- * GNSS: Global Navigation Satellite System

Why using ADCP with onboard GPS?

VADCP/bottom : computed with GPS or Bottom Track (BT) reference Vwater/ADCP : measured by the ADCP Vwater/bottom : computed with VADCP/bottom and Vwater/ADCP

GPS is used to geolocalize each velocity measurement : accuracy required to properly localize the measured velocity fields.

If GPS reference is selected (instead of Bottom Track reference), the GPS is used to compute **VADCP/bottom** : accuracy required to compute properly the final wanted value of **V**water/bottom, in this case a calibrated compass and the magnetic declination are needed.

Errors due to GPS quality...

1/ « multipaths » errors : when GPS signal is reflected by objects like tall buildings before it reaches the receiver

2/ Changes in satellite sky can have direct influence on accuracy of measured flow velocities (in GPS and DGPS quality)

3/ Changes in GPS status (GPS, DGPS, RTK) during measurement can have consequences on quality of the measured velocities.

GGA : positionning information, disturbed by «multipaths» **VTG** : velocity information, disturbed by satellites sky changes

Some results of a field campaign

Work with VMT software ...

1/ Import of GPS tracks

2/ Calculation of a rectilinear average transect from GPS tracks (least squared)

- 3/ Definition of a regular calculation grid on the average transect
- 4/ Projection of velocity measurements of each transect on the average profile

Some results from a measurement campaign...

Data transmitted for modelling

- Measured data are provided to the modeller
- Calibration of hydraulic and/or sedimentary models (TELEMAC...)
- Model simulations and decision making for solutions

Technical problems still to be solved

- Make connections more reliable
- Radio, Bluetooth ? How increasing the field measurement range ?
- Doppler communication PC more robusts
- Software applications : standardization required
- A lot of manipulations : HYPACK for navigation, QGIs for cartography, VMT for projection ...
- VMT software upgradeable to better answer the needs (recalculating GPS tracks ?)
- Recovery of bottom velocities (side lobes, ambiguity) ?
- □ GPS : Complete, automatic and easy to use set (Sontek ?)
- General reflection about ADCP + GPS to improve data collection ?

The end ... Thanks !

