## Curie temperature variations in synthetic titanomagnetite single crystals

**Sophie-Charlotte Lappe**<sup>1</sup> (sophie.lappe@googlemail.com), Georg Winkens<sup>1</sup>, Joerg Persson<sup>2</sup>, Shibabrata Nandi<sup>2</sup>, and Oleg Petracic<sup>2</sup>

<sup>1</sup>RWTH Aachen University, Institute of Crystallography, Germany <sup>2</sup>Jülich Centre for Neutron Science, Forschungszentrum Jülich, Germany



## Synthetic $Fe_{2.63}Ti_{0.37}O_4$ single crystal grown via OFZM technique









Pieces of the crystal were annealed in evacuated glass tubes. Measurements of the Curie temperature show systematic changes with annealing time and temperature.



Anneal Time [h]

3

Anneal Time [h]

Difference



Possible saturation around 375°C – 400°C anneal temperature.

The Curie temperature increases with longer annealing times and higher annealing temperatures. The saturation magnetization does not change. This is consistent with the theory of nanoscale Ti clustering.