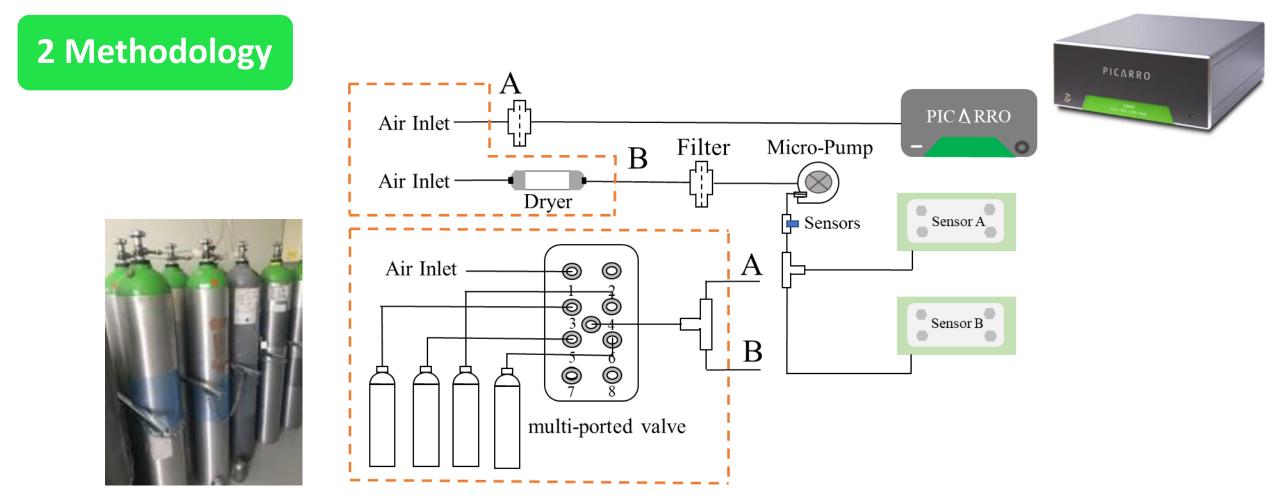

Yunsong Liu ^{1,2}, Jean-Daniel Paris ², Mihalis Vrekoussis ^{1,3}, Panayiota Antoniou ¹, Marios Argyrides ¹, Christos Constantinides ¹, Dylan Desbree ², Neoclis Hadjigeorgiou ¹, Christos Keleshis ¹, Olivier Laurent ², Andreas Leonidou ¹, Carole Philippon ², Panagiotis Vouterakos ¹, Pierre-Yves Quehe ¹, Philippe Bousquet ², Jean Sciare ¹
¹ The Cyprus Institute, Climate and Atmosphere Research Center (CARE-C), Nicosia, Cyprus ² Laboratoire des Sciences du Climat et de l'Environnement, 91191 Gif sur Yvette, France ³ University of Bremen, Institute of Environmental Physics and Remote Sensing (IUP) & Center of Marine

Environmental Sciences (MARUM), D-28359 Bremen, Germany

This study aims to develop and validate a UAV-CO₂ sensor system to map specific source emissions close to the ground. The CO₂ sensor used here is the High-Performance Platform (HPP 3.2, SenseAir AB) of a total weight 1058g including battery.


 CO_2 Sensor (SenseAir AB HPP_ CO_2 3.2version)

Unmanned System Research Laboratory (Cyl) - *Cruiser EFI*

2 Methodology

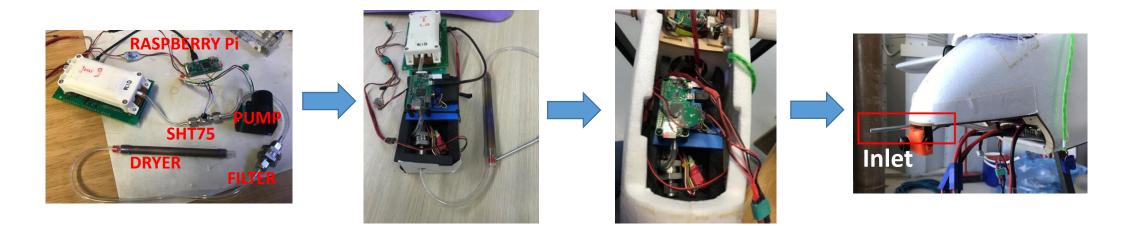
Performance Tests		Purposes
2.1 Laboratory Tests	Calibration	Confirm the presicion and stability
	Allan Deviation	Confirm the noise
	Temperature Tests	Correct from T changes
	Pressure Tests	Correct from P changes
	Humidity Tests	Correct from RH changes
	Simulated Flights	Assess the measurement error caused by T and P
2.2 Field Development	Manned Aircraft	Compare the performance with Picarro G2401-m
2.3 Field Development	UAV platforms	A small fixed-wing UAV with a wingspan of 1.83m

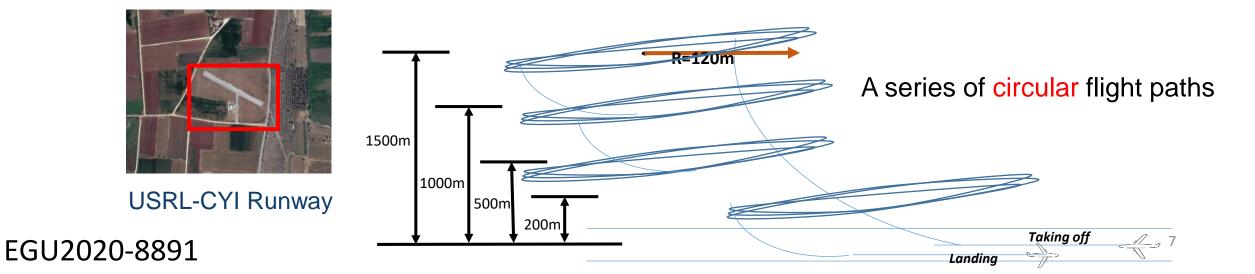
System set up for lab tests and field development

2 Methodology

Highlights _ (lab tests)

- > The precision of Sensor A is ± 0.36 ppm (1 σ) at 1 Hz.
- > The precision of Sensor B is ± 0.85 ppm (1 σ) at 1 Hz.
- Sensor B is more sensitive to pressure changes.
- Simulation tests show above 90% change corrected by pressure.
- Each sensor unit on purchase has their own P/T equations.





The setup and aircraft platform (Beechcraft Baron 58)

2 Methodology

System set up on the UAV platform

3 Recommendations

- Both sensors performs better below 1.5 km ASL.
- Calibration series are necessary to be correctted by P/T equations.
- The flowrate of sensors should be above 500 ml/min.
- Water vapor experiments are unrepeatable, so a dryer is necessary in the system.
 - Each sensor unit on purchase needs to be tested.
- The UAV-CO₂ sensor system is more suitable for horizontal measurements to investigate emissions close to the ground.

References

- 1. E. Arzoumanian et al., Atmos. Meas. Tech., 2019, 12, 2665-2677.
- 2. G. Allen et al., J. Waste Manag., 2019, 87, 883-892.
- 3. M. Kunz et al., Atmos. Meas. Tech., 2018, 11, 1833-1849.
- 4. J. Peischl et al., J. Geophys. Res. Atmos., 2016, 121, 6101-6111.

Thank you very much for your attention