

Modeling the effects and feedbacks of irrigation on the regional climate in Northern Italy

Christina Asmus^{1,2}, Peter Hoffmann¹, Diana Rechid¹, Jürgen Böhner²
christina.asmus@hzg.de

EGU2020: Sharing Geoscience Online

05.05.2020 14:00 - 15:45

Framework

HICSS LANDMATE project

- Modelling human LAND surface modifications and its feedbacks on local and regional cliMATE
- Interaction of land surface and atmosphere (moisture, heat, momentum and mass exchanges)
- Research on direct biophysical effects of human land surface modifications on atmospheric processes
- Land management is of major importance for the agriculture in Europe e.g. irrigation
- Part of WCRP CORDEX Flagship Pilot Study LUCAS (Land Use Across Scales)
 - RCM ensemble experiments including land use change
 - Quantifying biophysical effects of land use changes on the regional climate in Europe

Motivation

Irrigation as human land surface modification

- Example for land management
- Widely used
- Needs to be parameterized in climate models
- Effects not studied sufficiently on high resolution
- Complex interactions with regional climate can be expected on different time and spatial scales

Source: top: pixabax.com/Anrita1705; bottom: pixabax.com/feraugustodesign

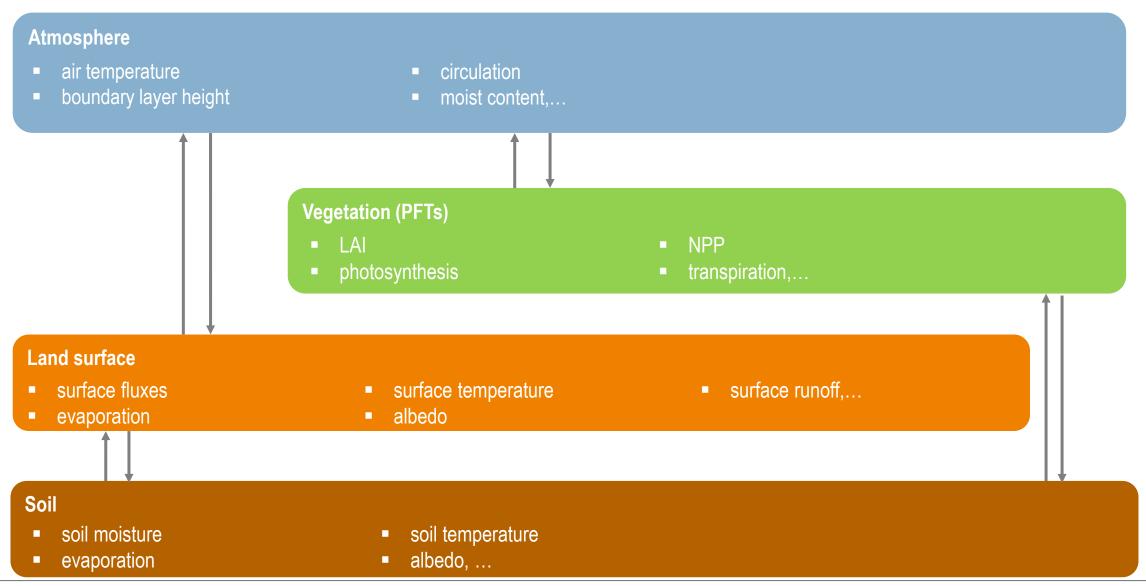
Objectives

- Development of new irrigation parameterizations
- Quantifying effects of irrigation on the local to regional climate
- Analysis of moist convection triggered or suppressed by irrigation

Reach them by...

Parameterization development for RCM

Model validation with observation data


Study of irrigation as convection trigger

Selected relevant parameters to be investigated

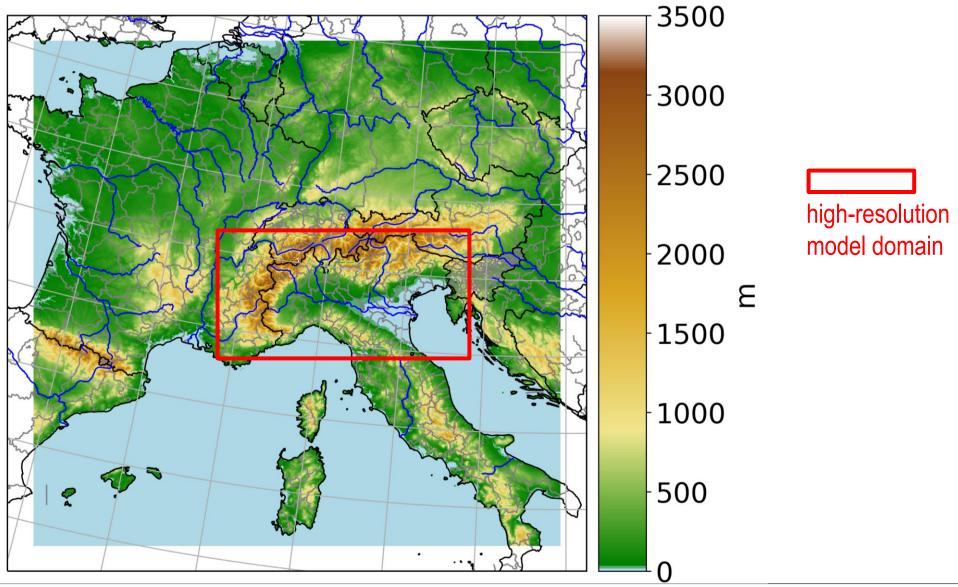
Regional climate model simulations

REMO-iMOVE

- RCM with interactive MOsaic VEgetation, including some routines from JSBACH¹
- Vegetation represented as plant functional types
 (PFTs)
- Dynamic representation of vegetational processes
- Representation of land surface heterogeneity using fractional PFTs per grid cell

Experimental setup

- High-resolution simulations on convection-permitting scale (3 km)
- Non-hydrostatic version of REMO
- Using implemented parameterizations
- Summer season
- Pilot region: Northern Italy


¹ Wilhelm, C. et al., 2014. Interactive coupling of regional atmosphere with biosphere in the new generation regional climate system model REMO-iMOVE. Geoscientific Model Development, 7, 1093-1114. doi:10.5194/gmd-7-1093-2014.

Pilot region: Northern Italy

Planned parameterizations I

Requirements

- Irrigation during growing season
- Different irrigation methods require different parameterizations
- Most used irrigation methods in northern Italy²:

Implementation

- Split PFTs in irrigated and rainfed PFTs
- Amount of irrigation water needs to be subtracted from available water reservoirs

	Channel irrigation	Sprinkler irrigation	Flooding
Planned model representation	Direct increase of soil moisture	Addition to rain rate	Land surface properties similar to a shallow lake

² Inea et al., 2014. Atlas of Italian Irrigation systems.

Planned parameterizations II

Activation of irrigation

Soil moisture limitation

Amount

 $wirr = ws_{target} - ws_{actual}$

wirr: irrigation water

ws: soil water content

Application

- Check for irrigation requirement in the morning each day
 - Growing season
 - Activation trigger
- Evenly applied irrigation water for a specific time period (hours)

Challenges & Outlook

Challenges

- Development of parameterizations, which can be applied to different regions
- Desirable would be parameterizations, which can be easily adapted to other (regional) climate models

Outlook

- Quantify potential of irrigation effects as climate adaptation and mitigation measures
- Study as part of the multi-model ensemble of LUCAS
- Define important findings for the implementation of irrigation parameterizations for other RCMs

This work is financed within the framework of Helmholtz Institute for Climate Service Science (HICSS), a cooperation between Climate Service Center Germany (GERICS) and Universität Hamburg, Germany and conducted as part of the project LANDMATE (Modelling human LAND surface modifications and its feedbacks on local and regional cliMATE).

