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Introduction



Flood impacts
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Connection to PUB

Status of Hydrometeorological Observation Networks in
Developing Countries
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Only few gauge stations exist throughout low income and developing countries out of which the majority is in a poor or declining state.
This makes traditional hydrological modeling difficult, since no gauge records exist for many places to calibrate a streamflow model.
Thus, providing streamflow forecasts often translates to prediction in ungauged basins.


https://www.gfdrr.org/sites/default/files/publication/state-of-hydrological-services_web.pdf

Deep Learning based
Rainfall-Runoff Modeling



Similarity of LSTMs & conceptual models

State space model: LSTM model:
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Kratzert et al. (2018)



https://www.hydrol-earth-syst-sci.net/22/6005/2018/

Experimental setup
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Benchmarking - gauged

Compared to regional models Compared to basin models
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In Kratzert et al. (2019a) we benchmarked the LSTM in the gauged setting against a bunch of conceptual hydrology models. All are trained on the
same forcings and training periods. We compared against models that were regionally optimized (left), and against models that are optimized
per-basin (right). Compared to both types of models, our LSTM based models (EA-LSTM & LSTM) outperformed all models by a far margin (evaluated
over 447 commonly modeled basins).

That is, a single LSTM-based model simulates streamflow better than state-of-the-art basin-optimized hydrology models.



https://www.hydrol-earth-syst-sci.net/23/5089/2019/

Benchmarking - ungauged
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In Kratzert et al. (2019b) we took a similar approach, but trained only on a subset of basins, and evaluated on a hold-out basin set (simulating
the ungauged setting). We performed 10-fold cross-validation, so that each basin is exactly once in the hold-out test set. Compared to
basin-optimized (gauged!) SAC-SMA and the US National-Water-Model, the ungauged LSTM (purple) outperformed in average both hydrology models, even
the gauged SAC-SMA.



https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR026065

Outlook



Future work

e Create a global dataset, consisting time series + catchment
attributes (same data sources globally)
e Test if generalization is equally good if the model is

transferred across countries/continents
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Google's Flood Forecasting Project: Google’'s effort for
providing timely flood warnings for people in developing
countries. Pilot project in India.
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https://ai.googleblog.com/2019/09/an-inside-look-at-flood-forecasting.html

